首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4051篇
  免费   145篇
  国内免费   18篇
化学   2813篇
晶体学   40篇
力学   95篇
数学   332篇
物理学   934篇
  2024年   5篇
  2023年   21篇
  2022年   71篇
  2021年   95篇
  2020年   79篇
  2019年   69篇
  2018年   59篇
  2017年   45篇
  2016年   121篇
  2015年   114篇
  2014年   141篇
  2013年   229篇
  2012年   317篇
  2011年   348篇
  2010年   181篇
  2009年   171篇
  2008年   266篇
  2007年   245篇
  2006年   225篇
  2005年   217篇
  2004年   168篇
  2003年   151篇
  2002年   137篇
  2001年   88篇
  2000年   90篇
  1999年   74篇
  1998年   59篇
  1997年   33篇
  1996年   49篇
  1995年   45篇
  1994年   48篇
  1993年   44篇
  1992年   30篇
  1991年   21篇
  1990年   29篇
  1989年   21篇
  1988年   6篇
  1987年   9篇
  1986年   12篇
  1985年   12篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1980年   7篇
  1979年   5篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
排序方式: 共有4214条查询结果,搜索用时 15 毫秒
101.
Oxaliplatin-induced peripheral neuropathy (OIPN) is a serious side effect that impairs the quality of life of patients treated with the chemotherapeutic agent, oxaliplatin. The underlying pathophysiology of OIPN remains unclear, and there are no effective therapeutics. This study aimed to investigate the causal relationship between spinal microglial activation and OIPN and explore the analgesic effects of syringaresinol, a phytochemical from the bark of Cinnamomum cassia, on OIPN symptoms. The causality between microglial activation and OIPN was investigated by assessing cold and mechanical allodynia in mice after intrathecal injection of the serum supernatant from a BV-2 microglial cell line treated with oxaliplatin. The microglial inflammatory response was measured based on inducible nitric oxide synthase (iNOS), phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated nuclear factor-kappa B (p-NF-κB) expression in the spinal dorsal horn. The effects of syringaresinol were tested using behavioral and immunohistochemical assays. We found that oxaliplatin treatment activated the microglia to increase inflammatory responses, leading to the induction of pain. Syringaresinol treatment significantly ameliorated oxaliplatin-induced pain and suppressed microglial expression of inflammatory signaling molecules. Thus, we concluded that the analgesic effects of syringaresinol on OIPN were achieved via the modulation of spinal microglial inflammatory responses.  相似文献   
102.
A method was developed for the rapid and quantitative analysis of 30 veterinary drugs belonging to 17 classes (amphenicols (1), anthelmintics (1), cephalosporins (4), coccidiostats (1), lincosamides (1), macrolide (1), nitroimidazole (1), penicillins (3), phenylhydrazines (1), polypeptides (1), pyrethrins (1), quinolones (5), sulfonamides (3), tetracycline (3), neuroleptic agents (1), triazene trypanocidal agents (1), other. (1)) in feeds. The proposed method with a modified Quick Polar Pesticides (QuPPe) sample preparation was validated for the determination of 30 veterinary drugs in feed samples by liquid chromatography triple-quadrupole mass spectrometry (LC–MS/MS). The sample was extracted with methanol containing 1% acetic acid and purified by dispersive solid-phase extraction (d-SPE) with C18. Good linearity (r2 ≥ 0.98) was observed, and the LOQ values ranged from 10 to 200 µg/kg. Average recoveries ranged from 70.8 to 118.4%, and the relative standard deviation was ≤ 18.7%. This validated method was used in the determination of 30 veterinary drugs in 142 feed samples obtained from South Korea. The results show that lincomycin was present in only one of the tested feed samples, although it was detected at a value lower than the LOQ. In conclusion, this multi-residue method can be used for screening through the detection and quantitation of residual multiclass veterinary drugs in feed samples.  相似文献   
103.
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits, which are accompanied by memory loss and cognitive disruption. Rhodiola sachalinensis (RSE) is a medicinal plant that has been used in northeastern Asia for various pharmacological activities. We attempted to carry out the bioconversion of RSE (Bio-RSE) using the mycelium of Bovista plumbe to obtain tyrosol-enriched Bio-RSE. The objective of this study was to investigate the effects of Bio-RSE on the activation of the cholinergic system and the inhibition of oxidative stress in mice with scopolamine (Sco)-induced memory impairment. Sco (1 mg/kg body weight, i.p.) impaired the mice’s performance on the Y-maze test, passive avoidance test, and water maze test. However, the number of abnormal behaviors was reduced in the groups supplemented with Bio-RSE. Bio-RSE treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. Bio-RSE dramatically improved the cholinergic system by decreasing acetylcholinesterase activity and regulated oxidative stress by increasing antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)). The reduction in nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling in the brain tissue due to scopolamine was restored by the administration of Bio-RSE. Bio-RSE also significantly decreased amyloid-beta 1–42 (Aβ1–42) and amyloid precursor protein (APP) expression. Moreover, the increased malondialdehyde (MDA) level and low total antioxidant capacity in Sco-treated mouse brains were reversed by Bio-RSE, and an increase in Nrf2 and HO-1 was also observed. In conclusion, Bio-RSE protected against Sco-induced cognitive impairment by activating Nrf2/HO-1 signaling and may be developed as a potential beneficial material for AD.  相似文献   
104.
105.
Human serum amyloid A (SAA) is an exchangeable apolipoprotein (apo) in high-density lipoprotein (HDL) that influences HDL quality and functionality, particularly in the acute phase of inflammation. On the other hand, the structural and functional correlations of HDL containing SAA and apoA-I have not been reported. The current study was designed to compare the change in HDL quality with increasing SAA content in the lipid-free and lipid-bound states in reconstituted HDL (rHDL). The expressed recombinant human SAA1 (13 kDa) was purified to at least 98% and characterized in the lipid-free and lipid-bound states with apoA-I. The dimyristoyl phosphatidylcholine (DMPC) binding ability of apoA-I was impaired severely by the addition of SAA, while SAA alone could not bind with DMPC. The recombinant human SAA1 was incorporated into the rHDL (molar ratio 95:5:1, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC): cholesterol: apoA-I) with various apoA-I:SAA molar ratios from 1:0 to 1:0.5, 1:1 and 1:2. With increasing SAA1 content, the rHDL particle size was reduced from 98 Å to 93 Å, and the α-helicity of apoA-I:SAA was decreased from 73% to 40% for (1:0) and (1:2), respectively. The wavelength maximum fluorescence (WMF) of tryptophan in rHDL was red-shifted from 339 nm to 345 nm for (1:0) and (1:2) of apoA-I:SAA, respectively, indicating that the addition of SAA to rHDL destabilized the secondary structure of apoA-I. Upon denaturation by urea treatment from 0 M to 8 M, SAA showed only a 3 nm red-shift in WMF, while apoA-I showed a 16 nm red-shift in WMF, indicating that SAA is resistant to denaturation and apoA-I had higher conformational flexibility than SAA. The glycation reaction of apoA-I in the presence of fructose was accelerated up to 1.8-fold by adding SAA in a dose-dependent manner than that of apoA-I alone. In conclusion, the incorporation of SAA in rHDL impaired the structural stability of apoA-I and exacerbated glycation of HDL and apoA-I.  相似文献   
106.
107.
108.
We have synthesized new magnetic resonance imaging (MRI) T1 contrast agents (CA1 and CA2) that permit the activatable recognition of the cellular vicinal thiol motifs of the protein thioredoxin. The contrast agents showed MR relaxivities typical of gadolinium complexes with a single water molecule coordinated to a Gd3+ center (i.e., ~4.54 mM−1s−1) for both CA1 and CA2 at 60 MHz. The contrast agent CA1 showed a ~140% relaxivity enhancement in the presence of thioredoxin, a finding attributed to a reduction in the flexibility of the molecule after binding to thioredoxin. Support for this rationale, as opposed to one based on preferential binding, came from 1H-15N-HSQC NMR spectral studies; these revealed that the binding affinities toward thioredoxin were almost the same for both CA1 and CA2. In the case of CA1, T1-weighted phantom images of cancer cells (MCF-7, A549) could be generated based on the expression of thioredoxin. We further confirmed thioredoxin expression-dependent changes in the T1-weighted contrast via knockdown of the expression of the thioredoxin using siRNA-transfected MCF-7 cells. The nontoxic nature of CA1, coupled with its relaxivity features, leads us to suggest that it constitutes a first-in-class MRI T1 contrast agent that allows for the facile and noninvasive monitoring of vicinal thiol protein motif expression in live cells.  相似文献   
109.
110.
In this paper we focus upon the electron injection dynamics in complete dye-sensitized nanocrystalline metal oxide solar cells (DSSCs). Electron injection dynamics are studied by transient absorption and emission studies of DSSCs and correlated with device photovoltaic performance and charge recombination dynamics. We find that the electron injection dynamics are dependent upon the composition of the redox electrolyte employed in the device. In a device with an electrolyte composition yielding optimum photovoltaic device efficiency, electron injection kinetics exhibit a half time of 150 ps. This half time is 20 times slower than that for control dye-sensitized films covered in inert organic liquids. This retardation is shown to result from the influence of the electrolyte upon the conduction band energetics of the TiO2 electrode. We conclude that optimum DSSC device performance is obtained when the charge separation kinetics are just fast enough to compete successfully with the dye excited-state decay. These conditions allow a high injection yield while minimizing interfacial charge recombination losses, thereby minimizing "kinetic redundancy" in the device. We show furthermore that the nonexponential nature of the injection dynamics can be simulated by a simple inhomogeneous disorder model and discuss the relevance of our findings to the optimization of both dye-sensitized and polymer based photovoltaic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号