In this paper, we propose a method to generalize Strang's circulant preconditioner for arbitrary n-by-n matrices An. The th column of our circulant preconditioner Sn is equal to the th column of the given matrix An. Thus if An is a square Toeplitz matrix, then Sn is just the Strang circulant preconditioner. When Sn is not Hermitian, our circulant preconditioner can be defined as . This construction is similar to the forward-backward projection method used in constructing preconditioners for tomographic inversion problems in medical imaging. We show that if the matrix An has decaying coefficients away from the main diagonal, then is a good preconditioner for An. Comparisons of our preconditioner with other circulant-based preconditioners are carried out for some 1-D Toeplitz least squares problems: min ∥ b - Ax∥2. Preliminary numerical results show that our preconditioner performs quite well, in comparison to other circulant preconditioners. Promising test results are also reported for a 2-D deconvolution problem arising in ground-based atmospheric imaging. 相似文献
Stereoscopic imaging and reconstruction technique is introduced to reconstruct the flame structures that are subject to acoustic excitation. The laminar diffusion flame under investigation was created in a cylindrical tube and excited by a loudspeaker. Stereo images were taken at a shutter speed of 1/10000th second using a ‘stereo camera’ and the depth cue of the flame structures along the camera viewing direction were then computed using machine vision methodology. By visualizing the computed three-dimensional flame models, as well as judging the corresponding attribute such as surface gradient, the understanding of the flame and acoustic wave interaction could be improved. 相似文献
The treatment of boron(III) subphthalocyanine chloride (SPcCl) with 3- or 4-hydroxypyridine in the presence of pyridine in toluene gave the corresponding boron(III) subphthalocyanine pyridinolates SPc(3-OPy) ( 1) or SPc(4-OPy) ( 2). Having a pyridyl group, these compounds could axially complex with a series of zinc(II) and ruthenium(II) porphyrins and phthalocyanines to form the corresponding subphthalocyanine-porphyrin and subphthalocyanine-phthalocyanine heterodyads. As revealed by UV-vis spectroscopy, the ground-state interaction between the two chromophores in these dyads is insignificant. The complexation processes were also studied by (1)H NMR and fluorescence spectroscopic methods, which confirmed the 1:1 binding stoichiometry. The association constants, as determined by fluorescence titration, were generally higher for the ruthenium(II) tetrapyrroles [(2.5-4.7) x 10 (4) M (-1)] than for the zinc(II) counterparts [(0.3-1.8) x 10 (4) M (-1)]. The molecular structures of the two pyridyl subphthalocyanines 1 and 2, together with three novel subphthalocyanine-porphyrin heterodyads, were also determined by X-ray diffraction analyses. 相似文献
The production of green hydrogen through photocatalytic water splitting is crucial for a sustainable hydrogen economy and chemical manufacturing. However, current approaches suffer from slow hydrogen production (<70 μmol ⋅ gcat−1 ⋅ h−1) due to the sluggish four-electrons oxygen evolution reaction (OER) and limited catalyst activity. Herein, we achieve efficient photocatalytic water splitting by exploiting a multifunctional interface between a nano-photocatalyst and metal–organic framework (MOF) layer. The functional interface plays two critical roles: (1) enriching electron density directly on photocatalyst surface to promote catalytic activity, and (2) delocalizing photogenerated holes into MOF to enhance OER. Our photocatalytic ensemble boosts hydrogen evolution by ≈100-fold over pristine photocatalyst and concurrently produces oxygen at ideal stoichiometric ratio, even without using sacrificial agents. Notably, this unique design attains superior hydrogen production (519 μmol ⋅ gcat−1 ⋅ h−1) and apparent quantum efficiency up to 13-fold and 8-fold better than emerging photocatalytic designs utilizing hole scavengers. Comprehensive investigations underscore the vital role of the interfacial design in generating high-energy photoelectrons on surface-degenerate photocatalyst to thermodynamically drive hydrogen evolution, while leveraging the nanoporous MOF scaffold as an effective photohole sink to enhance OER. Our interfacial approach creates vast opportunities for designing next-generation, multifunctional photocatalytic ensembles using reticular chemistry with diverse energy and environmental applications. 相似文献
This work focuses on the systematic investigation of the influences of pyrimidine-based thioether ligand geometries and counteranions on the overall molecular architectures. A N-containing heterocyclic dithioether ligand 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine (L1) and three structurally related isomeric bis(2-pyrimidinesulfanylmethyl)benzene (L2-L4) ligands have been prepared. On the basis of the self-assembly of CuX (X = I, Br, Cl, SCN, or CN) and the four structurally related flexible dithioether ligands, we have synthesized and characterized 10 new metal-organic entities, Cu4(L1)2I4 1, Cu4(L1)2Br4 2, [Cu2(L2)2I2.CH3CN]n 3, [Cu(L3)I]n 4, [Cu(L3)Br]n 5, [Cu(L3)CN]n 6, [Cu(L4)CN]n 7, [Cu2(L4)I2]n 8, [Cu2(L4)(SCN)2]n 9, and [[Cu6I5(L4)3](BF4).H2O]n 10, by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that the 10 Cu(I) complexes possess an increasing dimensionality from 0D (1 and 2) to 1D (3-5) to 2D (6-9) to 3D (10), which indicates that the ligand geometry takes an essential role in the framework formation of the Cu(I) complexes. The influence of counteranions and pi-pi weak interactions on the formation and dimensionality of these coordination polymers has also been explored. In addition, the photoluminescence properties of Cu(I) coordination polymers 4-10 in the solid state have been studied. 相似文献
Germanium nanowires (GeNWs) with single, double, quadruple and octuple surface dangling bonds (SDBs) are investigated using density-functional-theory calculations. We show that single SDB defected GeNWs remain semiconducting as their non-defected form while double or multiple SDB defects result in either semiconducting or metallic GeNWs, depending on the defect's locations on the surface. More importantly, we show that the electronic properties of surface defected GeNWs can also be fine-tuned by applying tensile and compressive strains. Upon the right loading, the surface defected GeNWs become half-metallic. In addition, we determine that the surface defected GeNWs can be classified into three classes: (1) GeNWs with zero magnetic moment, which are either metallic or semiconducting; (2) GeNWs with net magnetic moments equal to the number of SDBs, which are semiconducting with distinct spin-up and spin-down configurations; and (3) GeNWs with net magnetic moments significantly lower than the number of SDBs. We also find that only the defected GeNWs that fall under (3) are potentially half-metallic. Our results predict that half-metallic GeNWs can be obtained via engineering of the surface defects and the structures without the presence of impurity dopants. 相似文献
Co–Fe bimetallic nanoparticles-affixed polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) nanofiber membrane is fabricated using the electrospinning and chemical reduction techniques. The semicrystalline polymeric backbone decorated with the highly crystalline Co–Fe bimetallic nanoparticles enunciates the mechanical integrity, while the incessant and swift electron mobility is articulated with the consistent dissemination of bimetallic nanoparticles on the intersected and multi-layered polymeric nanofibers. The diffusion and adsorption of glucose are expedited in the extended cavities and porosities of as-formulated polymeric nanofibers, maximizing the glucose utilization efficacy, while the uniformly implanted Co4+/Fe3+ active centers on PVdF-HFP nanofibers maximize the electrocatalytic activity toward glucose oxidation under alkaline regimes. Thus, the combinative sorts including nanofiber and nanocomposite strategies of PVdF-HFP/Co–Fe membrane assimilate the enzyme-less electrochemical glucose detection concerts of high sensitivity (375.01 μA mM?1 cm?2), low limit of detection (0.65 μm), and wide linear range (0.001 to 8 mM), outfitting the erstwhile enzyme-less glucose detection reports. Additionally, the endowments of high selectivity and real sample glucose-sensing analyses of PVdF-HFP/Co–Fe along with the binder-less and free-standing characteristics construct the state-of-the-art paradigm for the evolution of affordable enzyme-less electrochemical glucose sensors.
Surface oxygen functionalities (particularly C−O configuration) in carbon materials have negative influence on their electrical conductivity and Na+ storage performance. Herein, we propose a concept from surface chemistry to regulate the oxygen configuration in hierarchically porous carbon nanosheets (HPCNS). It is demonstrated that the C−O/C=O ratio in HPCNS reduces from 1.49 to 0.43 and its graphitization degree increases by increasing the carbonization temperature under a reduction atmosphere. Remarkably, such high graphitization degree and low C−O content of the HPCNS-800 are favorable for promoting its electron/ion transfer kinetics, thus endowing it with high-rate (323.6 mAh g−1 at 0.05 A g−1 and 138.5 mAh g−1 at 20.0 A g−1) and durable (96 % capacity retention over 5700 cycles at 10.0 A g−1) Na+ storage performance. This work permits the optimization of heteroatom configurations in carbon for superior Na+ storage. 相似文献