首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3566篇
  免费   106篇
  国内免费   8篇
化学   2837篇
晶体学   26篇
力学   39篇
数学   178篇
物理学   600篇
  2023年   20篇
  2021年   30篇
  2020年   44篇
  2019年   53篇
  2018年   36篇
  2017年   20篇
  2016年   56篇
  2015年   49篇
  2014年   74篇
  2013年   165篇
  2012年   132篇
  2011年   210篇
  2010年   75篇
  2009年   95篇
  2008年   174篇
  2007年   180篇
  2006年   175篇
  2005年   215篇
  2004年   163篇
  2003年   129篇
  2002年   141篇
  2001年   114篇
  2000年   139篇
  1999年   48篇
  1998年   40篇
  1997年   40篇
  1996年   55篇
  1995年   29篇
  1994年   51篇
  1993年   37篇
  1992年   50篇
  1991年   49篇
  1990年   40篇
  1989年   39篇
  1988年   51篇
  1987年   41篇
  1986年   60篇
  1985年   56篇
  1984年   59篇
  1983年   30篇
  1982年   34篇
  1981年   36篇
  1980年   29篇
  1979年   33篇
  1978年   29篇
  1977年   27篇
  1976年   21篇
  1975年   32篇
  1974年   28篇
  1972年   22篇
排序方式: 共有3680条查询结果,搜索用时 515 毫秒
221.
There is growing awareness that circadian clocks are closely related to the intracellular redox state across a range of species. As the redox state is determined by the exchange of the redox species, electrochemically controlled extracellular electron transfer (EC‐EET), a process in which intracellular electrons are exchanged with extracellular electrodes, is a promising approach for the external regulation of circadian clocks. Herein, we discuss whether the circadian clock can be regulated by EC‐EET using the cyanobacterium Synechococcus elongatus PCC7942 as a model system. In vivo monitoring of chlorophyll fluorescence revealed that the redox state of the plastoquionone pool could be controlled with EC‐EET by simply changing the electrode potential. As a result, the endogenous circadian clock of S. elongatus cells was successfully entrained through periodically modulated EC‐EET by emulating the natural light/dark cycle, even under constant illumination conditions. This is the first example of regulating the biological clock by electrochemistry.  相似文献   
222.
Co–Pd bimetallic alloy nanoparticle catalysts were prepared from CoCl2, Pd(OAc)2 and several capping agents with Li(C2H5)3BH. The nanoparticle catalysts were applied to the aerobic oxidation of a variety of alcohols in water to give the corresponding carbonyl products. The catalyst was magnetically recovered and reused for further oxidation. The nanoparticle catalysts were characterized with TEM, ICP, and XPS analyses.  相似文献   
223.
The pigment, tecophilin, in blue flowers of Tecophilaea cyanocrocus was isolated and the structure was determined to be 3-O-(6-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-7-O-(6-O-(4-O-(2-O-(4-O-β-d-glucopyranosyl-(E)-caffeoyl)-6-O-(4-O-β-d-glucopyranosyl-(E)-caffeoyl)-β-d-glucopyranosyl)-(E)-caffeoyl)-β-d-glucopyranosyl)delphinidin. The reproduction experiment of the same color as petals according to the results of chemical analysis and measurement of vacuolar pH of blue cells clarified that the blue color solely develops by tecophilin without interaction of metal ions nor co-pigments. 1H NMR analysis and CD spectrum indicate the co-existence of clockwise intermolecular self-association of the delphinidin nuclei and intramolecular π–π stacking between the chromophore and caffeoyl residues to derive bathochromic shift of the absorption spectrum and stabilize the color by preventing hydration reaction.  相似文献   
224.
Radical reactions of a C3-vinylated chlorophyll derivative, methyl pyropheophorbide-a, which were induced by thiols and the conventional initiator azobisisobutyronitrile (AIBN) were examined in vitro for the first time. Thiyl radicals attacked regioselectively at the sole C3-vinyl group, and the anti-Markovnikov sulfanyl adducts were obtained as major products. The other peripheral substituents, as well as the chlorin macrocycle, remained intact. The AIBN-induced radical reaction competed with co-oxidation that afforded the C3-formyl chlorin. This method can open new routes to derivatization of vinyl chlorins.  相似文献   
225.
Plasma Chemistry and Plasma Processing - Atmospheric low-temperature plasma has received attention for application in disinfection methods. In this study, we develop a plasma bubbling method as a...  相似文献   
226.
The positive muon (μ+) can be regarded as a light isotope of proton and has been an important tool to study radical reactions of organic compounds. Recently, muons have been applied to produce short-lived paramagnetic species from the heavier unsaturated organic molecules including the p-block elements. This article overviews recent muon spin rotation/resonance (μSR) studies on the phosphorus analogs of alkenes, anthracenes, and cyclobutane-1,3-diyls together with the fundamentals of μSR. The acyclic phosphaalkene of P=C and phosphasilenes of P=Si can accept muonium (Mu=[μ+e]) at the heavier double bonds, and the corresponding radicals have been characterized. The phosphorus atom in 9-phosphaanthracene, whose P=C double bond is stabilized by the peri-substituted CF3 groups, predominantly captures muonium to provide the corresponding paramagnetic fused heterocyclic system. The peri-trifluoromethyl groups are functional to promote the unprecedented light isotope effect of muon providing the planar three-cyclic molecular structure to consume the increased zero-point energy. The formally open-shell singlet 1,3-diphosphacyclobutane-2,4-diyl unit can accept muonium at the (ylidic) phosphorus or the skeletal radicalic carbon, and the corresponding paramagnetic phosphorus heterocycles can be characterized by μSR. The findings on these muoniation processes to the unsaturated phosphorus-containing compounds will contribute not only to development of novel paramagnetic functional species but also to progress on muon science.  相似文献   
227.
Adsorption of dimethyl disulfide (DMDS) on gold colloidal nanoparticle surfaces has been examined to check its binding mechanism. Differently from previous results, DMDS molecules adsorbed on the gold surface at high concentration showed the S–S stretching band at 500 cm−1 in surface-enhanced Raman scattering (SERS) spectra, which indicates the presence of intact adsorption of DMDS molecules. However, it was found that the S–S bond of disulfides was easily cleaved on the gold surface at low concentration. These behaviors were not observed for diethyl disulfide (DEDS) or diphenyl disulfide (DPDS). Our results indicate that DMDS molecules with the shortest alkyl chains on the gold surface can be inserted into self-assembled monolayers (SAMs) without the S–S bond cleavage during self-assembly due to insufficient lateral van der Waals interaction and the low adsorption activity of disulfides, whereas DEDS with longer alkyl chains or DPDS with the weak disulfide bond dissociation energy would not. These unusual DMDS adsorption behaviors were examined by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). We also compared the bonding dissociation energy of the S–S bonds of various disulfides by means of a density functional theory (DFT) calculation.  相似文献   
228.
High-density polyethylene/modified bentonite clay/polar compatibilizer nanocomposites were prepared through the melt intercalation process. The clay was organophilizated using different percentages of quaternary ammonium salt 100, 125, and 150 % based cation exchange capacity of the clay. The nanocomposites were prepared in a counter-rotating twin-screw extruder and then specimens were injection molded. For the evaluation of flammability of the test system was used for burning in the horizontal position according to the norm (Underwriters Laboratories, UL94HB) and to the method of cone calorimeter. The thermal behavior of nanocomposites was evaluated by thermogravimetry and X-ray diffraction techniques, and transmission electron microscopy were used to characterize the morphology and analyze the degree of expansion of the clays prepared and the degree of exfoliation of nanocomposites. It was observed that the percentage of ammonium salt and the compatibilizer polar influence on the final properties of the systems and consequently improving the thermal stability and reducing the flammability of the matrix.  相似文献   
229.
UDP‐glucose:glycoprotein glucosyltransferase (UGGT) plays a key role in recognizing folded and misfolded glycoproteins in the glycoprotein quality control system of the endoplasmic reticulum. UGGT detects misfolded glycoproteins and re‐glucosylates them as a tag for misfolded glycoproteins. A flexible model to reproduce in vitro folding of a glycoprotein in the presence of UGGT in a mixture containing correctly folded, folding intermediates, and misfolded glycoproteins is described. The data demonstrates that UGGT can re‐glucosylate all intermediates in the in vitro folding experiments, thus indicating that UGGT inspects not only final folded products, but also the glycoprotein folding intermediates.  相似文献   
230.
The hairpin structure is one of the most common secondary structures in RNA and holds a central position in the stream of RNA folding from a non‐structured RNA to structurally complex and functional ribonucleoproteins. Since the RNA secondary structure is strongly correlated to the function and can be modulated by the binding of small molecules, we have investigated the modulation of RNA folding by a ligand‐assisted formation of loop–loop complexes of two RNA hairpin loops. With a ligand (NCT6), designed based on the ligand binding to the G–G mismatches in double‐stranded DNA, we successfully demonstrated the formation of both inter‐ and intra‐molecular NCT6‐assisted complex of two RNA hairpin loops. NCT6 selectively bound to the two hairpin loops containing (CGG)3 in the loop region. Native polyacrylamide gel electrophoresis analysis of two doubly‐labeled RNA hairpin loops clearly showed the formation of intermolecular NCT6‐assisted loop–loop complex. Förster resonance energy‐transfer studies of RNA constructs containing two hairpin loops, in which each hairpin was labeled with Alexa488 and Cy3 fluorophores, showed the conformational change of the RNA constructs upon binding of NCT6. These experimental data showed that NCT6 simultaneously bound to two hairpin RNAs at the loop region, and can induce the conformational change of the RNA molecule. These data strongly support that NCT6 functions as molecular glue for two hairpin RNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号