首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1291篇
  免费   27篇
  国内免费   3篇
化学   986篇
晶体学   9篇
力学   6篇
数学   88篇
物理学   232篇
  2023年   7篇
  2022年   7篇
  2021年   12篇
  2020年   20篇
  2019年   18篇
  2018年   11篇
  2017年   13篇
  2016年   28篇
  2015年   30篇
  2014年   19篇
  2013年   63篇
  2012年   60篇
  2011年   71篇
  2010年   41篇
  2009年   43篇
  2008年   73篇
  2007年   76篇
  2006年   73篇
  2005年   71篇
  2004年   70篇
  2003年   51篇
  2002年   55篇
  2001年   31篇
  2000年   22篇
  1999年   10篇
  1998年   18篇
  1997年   8篇
  1996年   19篇
  1995年   10篇
  1994年   14篇
  1993年   10篇
  1992年   17篇
  1991年   11篇
  1990年   20篇
  1989年   20篇
  1988年   13篇
  1987年   13篇
  1985年   16篇
  1984年   23篇
  1983年   11篇
  1982年   15篇
  1981年   15篇
  1980年   6篇
  1979年   12篇
  1978年   13篇
  1977年   10篇
  1976年   6篇
  1975年   9篇
  1974年   5篇
  1973年   5篇
排序方式: 共有1321条查询结果,搜索用时 31 毫秒
121.
The site-selective H/D exchange reaction of phenol in sub- and supercritical water is studied without added catalysts. In subcritical water in equilibrium with steam at 210-240 degrees C, the H/D exchange proceeds both at the ortho and para sites in the phenyl ring, with no exchange observed at the meta site. The pseudo-first-order rate constants are of the order of 10(-4) s(-1); 50% larger for the ortho than for the para site. In supercritical water, the exchange is observed also at the meta site with the rate constant in the range of 10(-6)-10(-4) s(-1). As the bulk density decreases, the exchange slows down and the site selectivity toward the ortho is enhanced. The enhancement is due to the phenol-water interaction preference at the atomic resolution. The site selectivity toward the ortho is further enhanced when the reaction is carried out in benzene/water solution. Using such selectivity control and the reversible nature of the hydrothermal deuteration/protonation process, it is feasible to synthesize phenyl compounds that are deuterated at any topological combination of ortho, meta, and para sites.  相似文献   
122.
-Cyclodextrin having cinnamamide at 6- or 3-positions (6-CiNH--CD, 3-CiNH--CD) and -cyclodextrin with cinnamamide on 6-position (6-CiNH--CD) have been prepared. Supramolecular structures were formed in the solid state or aqueous solutions and characterized by measurements of NMR and vapor pressure osmometry (VPO). The results indicate that 6-CiNH--CD formed insoluble supramolecular polymers in the solid state, while 6-CiNH--CD and 3-CiNH--CD formed supramolecular complexes in aqueous solutions. 6-CiNH--CD was found to form a dimer in an aqueous solution. 3-CiNH--CD formed intermolecular complexes to give supramolecular polymers. The differences of the position of guest part on cyclodextrins caused to give a variety of supramolecular structures in aqueous solutions.  相似文献   
123.
124.
A core-shell composite consisting of a palladium (Pd) nanoparticle and a hollow carbon shell (Pd@hmC) was employed as a catalyst for aerobic oxidation of various alcohols. The core-shell structure was synthesized by consecutive coatings of Pd nanoparticles with siliceous and carbon layers followed by removal of the intermediate siliceous layer. Structural characterizations using TEM and N(2) adsorption-desorption measurements revealed that Pd@hmC thus-obtained was composed of a Pd nanoparticle core of 3-6 nm in diameter and a hollow carbon shell with well-developed mesopore (ca. 2.5 nm in diameter) and micropore (ca. 0.4-0.8 nm in diameter) systems. When compared to some Pd-supported carbons, Pd@hmC showed a high level of catalytic activity for oxidation of benzyl alcohol into benzaldehyde using atmospheric pressure of O(2) as an oxidant. The Pd@hmC composite also exhibited a high level of catalytic activity for aerobic oxidations of other primary benzylic and allylic alcohols into corresponding aldehydes. The presence of a well-developed pore system in the lateral carbon shell enabled efficient diffusion of both substrates and products to reach the central Pd nanoparticles, leading to such high catalytic activities. This core-shell structure also provided high thermal stability of Pd nanoparticles toward coalescence and/or aggregation due to the physical isolation of each Pd nanoparticle from neighboring particles by the carbon shell: this specific property of Pd@hmC resulted in possible regeneration of catalytic activity for these aerobic oxidations by a high-temperature heat treatment of the sample recovered after catalytic reactions.  相似文献   
125.
A new route for (2S,3S,4S)-form, the physiologically active stereoisomer of dehydroxymethylepoxyquinomicin (DHMEQ), a potent NF-κB inhibitor, was established by chemoenzymatic approach. Elaboration on the asymmetric epoxidation of a p-benzoquinone monoketal with benzylcinchonidinium tert-butylhydroperoxide yielded an epoxyenone, in 79.8% ee and 57% yield in reproducible manner. By way of the transformation of this key intermediate to enantiomerically pure (2S,3S,4S)-DHMEQ, the contaminating undesired enantiomer could be effectively removed by applying Burkholderia cepacia lipase-catalyzed hydrolysis of diacylated precursor. The above integrated combination of chemical asymmetric synthesis and enzyme-catalyzed kinetic resolution enabled us to prepare active DHMEQ in a large-scale.  相似文献   
126.
Formation mechanisms of silver (Ag) particles in an aqueous ethanol solution of poly(N-vinyl-2-pyrrolidone) (PVP) by the photoreduction of AgClO(4) were investigated by means of in situ small-angle X-ray scattering (SAXS) measurements. The kinetics of association process (nucleation, growth, and coalescence) of Ag(0) atoms to produce Ag particles was successfully revealed by the quantitative SAXS analysis for the number-average of radius (R(0)), number of particles (n(Ag)), reduced standard deviation (σ(R)/R(0)), and volume fraction (?(Ag)) of Ag particles produced by the photoreduction. The rate of nucleation and growth process during Ag particle formation strongly depend on the initial metal concentration. The time evolution of radius and number of Ag particles indicates that a mechanism of Ag particle formation is composed of different three processes, that is, reduction-nucleation, Ostwald ripening, and particle coalescence. In a rapid reduction-nucleation process, small nuclei or particles (average radius ~2.5 nm) are produced by an autocatalytic reduction. After the formation of small nuclei or particles proceeds, Ostwald ripening and particle coalescence, predicted by the Lifshitz-Slyozov-Wagner theory (LSW theory), subsequently occur, resulting in the particle growth (average radius ~11.5 nm).  相似文献   
127.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   
128.
Nucleic acid constituents such as nucleobases, nucleosides and nucleotides were separated by counter-current chromatography using type J coil planet centrifuge. The separation was performed with a hydrophilic solvent system composed of 1-propanol/800 mM potassium phosphate buffer (pH 7.4) (1:1, v/v) by eluting the lower aqueous phase at a flow-rate of 0.5 ml/min. Eight selected nucleic acid constituents (4.0 mg, 0.5 mg of each), uridine monophosphate (UMP), adenosine monophosphate (AMP), deoxyadenosine monophosphate (dAMP), uridine, urasile, deoxy uridine, adenosine and adenine were well resolved within 160 min.  相似文献   
129.
In order to fully understand the role of volatile organic compounds (VOCs) under natural conditions, an adaptable analytical method was developed as the first step. β-Ionone, β-cyclocitral, 2-methyl-1-butanol and 3-methyl-1-butanol were simultaneously analyzed in addition to geosmin and 2-MIB using GC/MS with SPME. The slight modification of a known method allowed the simultaneous detection and quantification of these VOCs. The SIM of the 3-methyl-1-butanol was always accompanied by a shoulder peak, suggesting the presence of two compounds. In order to separate both compounds, the GC/MS conditions were optimized, and the additional peak was identified as 2-methyl-1-butanol by direct comparison of the authentic compound, indicating that the Microcystis strain always produces a mixture of 2-methyl-1-butanol and 3-methyl-1-butanol. Furthermore, it was found that 2-methyl-1-butanol and 3-methyl-1-butanol were predominant in the dissolved fractions. β-Cyclocitral was easily oxidized to provide the oxidation product, 2,6,6-trimethylcyclohexene-1-carboxylic acid, which causes the blue color formation of cyanobacteria as a consequence of acid stress. The intact acid could be satisfactorily analyzed using the usual GC/MS without derivatization.  相似文献   
130.
Alkylative carbocyclization reactions of ω‐iodoalkynyl tosylates with alkynyllithium compounds to give products with incorporated iodine atoms are described. Slow addition of 2‐(3‐iodoprop‐2‐ynyloxy)ethyl tosylates to 1‐alkynyllithium compounds in tetrahydrofuran at 40 °C followed by additional stirring at this temperature gives (Z)‐3‐(1‐iodoprop‐2‐ynylidene)tetrahydrofurans stereoselectively in good to moderate yields. Under similar conditions at 0 °C, 4‐iodobut‐1‐ynyl tosylates react with 1‐alkynyllithium compounds to give (1‐iodoprop‐2‐ynylidene)cyclopropanes. The carbocyclization reactions are proposed to proceed through a new carbenoid‐chain process involving the exo cyclization of a lithium acetylide intermediate and the vinylic substitution of the resulting TsO,Li‐cycloalkylidenecarbenoids (Ts=tosyl) by 1‐alkynyllithium compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号