首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13215篇
  免费   2212篇
  国内免费   1413篇
化学   9090篇
晶体学   122篇
力学   884篇
综合类   88篇
数学   1613篇
物理学   5043篇
  2024年   45篇
  2023年   281篇
  2022年   474篇
  2021年   518篇
  2020年   532篇
  2019年   474篇
  2018年   461篇
  2017年   400篇
  2016年   575篇
  2015年   636篇
  2014年   734篇
  2013年   979篇
  2012年   1123篇
  2011年   1148篇
  2010年   796篇
  2009年   735篇
  2008年   818篇
  2007年   764篇
  2006年   684篇
  2005年   562篇
  2004年   415篇
  2003年   348篇
  2002年   320篇
  2001年   280篇
  2000年   235篇
  1999年   278篇
  1998年   262篇
  1997年   191篇
  1996年   214篇
  1995年   213篇
  1994年   183篇
  1993年   160篇
  1992年   129篇
  1991年   142篇
  1990年   143篇
  1989年   108篇
  1988年   92篇
  1987年   78篇
  1986年   59篇
  1985年   62篇
  1984年   28篇
  1983年   33篇
  1982年   26篇
  1981年   20篇
  1980年   13篇
  1979年   10篇
  1978年   8篇
  1977年   10篇
  1974年   6篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases, including Alzheimer''s disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While significant efforts have been made to develop different prevention strategies and preclinical hits for these diseases, conventional design strategies of amyloid inhibitors are mostly limited to either a single prevention mechanism (amyloid cascade vs. microbial infection) or a single amyloid protein (Aβ, hIAPP, or hCT), which has prevented the launch of any successful drug on the market. Here, we propose and demonstrate a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins, human α-defensin 6 (HD-6) and human β-defensin 1 (HBD-1), as multiple-target, dual-function, amyloid inhibitors. Both HD-6 and HBD-1 can cross-seed with three amyloid peptides, Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC), to prevent their aggregation towards amyloid fibrils from monomers and oligomers, rescue SH-SY5Y and RIN-m5F cells from amyloid-induced cytotoxicity, and retain their original antimicrobial activity against four common bacterial strains at sub-stoichiometric concentrations. Such sequence-independent anti-amyloid and anti-bacterial functions of intestinal defensins mainly stem from their cross-interactions with amyloid proteins through amyloid-like mimicry of β-sheet associations. In a broader view, this work provides a new out-of-the-box thinking to search and repurpose a huge source of antimicrobial peptides as amyloid inhibitors, allowing the blocking of the two interlinked pathological pathways and bidirectional communication between the central nervous system and intestines via the gut–brain axis associated with neurodegenerative diseases.

Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases. Here, we proposed a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins as multiple-target, dual-function amyloid inhibitors.  相似文献   
52.
The simulation of particle fluidization behavior in a complex geometry with a large number of particles is challenging owing to the complexity of unstructured c...  相似文献   
53.
Pyroptosis is a programmed cell death widely studied in cancer cells for tumour inhibition, but rarely in dendritic cell (DC) activation for vaccine development. Here, we report the synthesis of sodium stabilized mesoporous aluminosilicate nanoparticles as DC pyroptosis modulators and antigen carriers. By surface modification of sodium-stabilized four-coordinate aluminium species on dendritic mesoporous silica nanoparticles, the resultant Na-IVAl-DMSN significantly activated DC through caspase-1 dependent pyroptosis via pH responsive intracellular ion exchange. The released proinflammatory cellular contents further mediated DC hyperactivation with prolonged cytokine release. In vivo studies showed that Na-IVAl-DMSN induced enhanced cellular immunity mediated by natural killer (NK) cells, cytotoxic T cells, and memory T cells as well as humoral immune response. Our results provide a new principle for the design of next-generation nanoadjuvants for vaccine applications.

Na-IVAl-DMSN acts as both antigen carriers and modulators to “hyperactivate” dendritic cells (DCs) via potassium (K+) efflux dependent pyroptosis, eventually leading to enhanced adaptive and innate immunity.  相似文献   
54.
Designing delocalized excitons with low binding energy (Eb) in organic semiconductors is urgently required for efficient photochemistry because the excitons in most organic materials are localized with a high Eb of >300 meV. In this work, we report the achievement of a low Eb of ∼50 meV by constructing phenothiazine-based covalent organic frameworks (COFs) with inherent crystallinity, porosity, chemical robustness, and feasibility of bandgap engineering. The low Eb facilitates effective exciton dissociation and thus promotes photocatalysis by using these COFs. As a demonstration, we subject these COFs to photocatalytic polymerization to synthesize polymers with remarkably high molecular weight without any requirement of the metal catalyst. Our results can facilitate the rational design of porous materials with low Eb for efficient photocatalysis.

We report the construction of phenothiazine-based covalent organic frameworks, which exhibited diverse structures, the feasibility of bandgap engineering, and unprecedented ultralow exciton binding energy of ∼50 meV for photocatalytic polymerization.  相似文献   
55.
Flexible strain sensors, when considering high sensitivity and a large strain range, have become a key requirement for current robotic applications. However, it is still a thorny issue to take both factors into consideration at the same time. Here, we report a sandwich-structured strain sensor based on Fe nanowires (Fe NWs) that has a high GF (37–53) while taking into account a large strain range (15–57.5%), low hysteresis (2.45%), stability, and low cost with an areal density of Fe NWs of 4.4 mg/cm2. Additionally, the relationship between the contact point of the conductive network, the output resistance, and the areal density of the sensing unit is analyzed. Microscopically, the contact points of the conductive network directly affect the sensor output resistance distribution, thereby affecting the gauge factor (GF) of the sensor. Macroscopically, the areal density and the output resistivity of the strain sensor have the opposite percolation theory, which affects its linearity performance. At the same time, there is a positive correlation between the areal density and the contact point: when the stretching amount is constant, it theoretically shows that the areal density affects the GF. When the areal density reaches this percolation threshold range, the sensing performance is the best. This will lay the foundation for rapid applications in wearable robots.  相似文献   
56.
57.
The theoretical investigation of all parameter noises in repetition-rate laser pulse train was presented. The expression of power spectrum of laser pulse trains with all parameter noises was derived, and the power spectra of pulse trains with different noise parameters were numerically simulated. By comparing the power spectra with and without pulse-width jitter, we noted that pulse-width jitter could not be neglected compared with amplitude noise and timing jitter and contributed a great amount of noise into the power spectrum under the condition that the product of pulse width and angular frequency was larger than 1.  相似文献   
58.
This study aimed to elucidate the responses of a novel characterized Issatchenkia terricola WJL-G4 against citric acid stress by performing physiological analysis, morphology observation, and structural and membrane fatty acid composition analysis. The results showed that under citric acid stress, the cell vitality of I. terricola WJL-G4 was reduced. The cell morphology changed with the unclear, uncompleted and thinner cell wall, and degraded the cell structure. When the citric acid concentration was 20 g/L, I. terricola WJL-G4 could tolerate citric acid and maintain the cell structure by increasing the intracellular pH, superoxide dismutase activity, and contents of unsaturated fatty acids. As the citric acid concentration was ≥80 g/L, the stress has exceeded the cellular anti-stress ability, causing substantial cell damage. The cell membrane permeability, the content of membrane lipids, malondialdehyde and superoxide anion increased, but the intracellular pH and superoxide dismutase activities decreased, accompanying the increase of citric acid concentrations. The findings of this work provided a theoretical basis for the responsive mechanism of I. terricola WJL-G4 under high concentrations of citric acid, and can serve as a reference for biological acid reduction in fruit processing.  相似文献   
59.
从超导磁体气冷电流引线的热平衡方程出发,对电流引线进行分段,提出了一种较为精确计算电流引线长横比及由电流引线末端流入低温容器热量的计算方法;电流引线中氦气流阻是设计电流引线时一个很重要的参数,由于电流引线片形状很复杂,计算其中氦气流阻比较好的方法是采用CFD软件Fluent。氦气模型单元数很庞大,因此对氦气模型进行了简化和分段,相邻两段模型间采用流量和压力边界条件进行耦合。  相似文献   
60.
The first member of the single‐isomer, dicationic cyclodextrin (CD) family, 6A‐ammonium‐6C‐butylimidazolium‐β‐cyclodextrin chlorides (AMBIMCD), has been synthesized, analytically characterized, and used to separate a variety of acidic enantiomers and amino acids by CE. Starting from mono‐6A‐azido‐β‐cyclodextrin, the cationic imidazolium and ammonium moieties were subsequently introduced onto primary ring of β‐cyclodextrin via nucleophilic addition and Staudinger reaction. The analytically pure AC regio‐isomer CD was further obtained via column chromatography. This dicationic CD exhibited excellent enantioselectivities for selected analytes at concentration as low as 0.5 mM, which were even better than those of its mono‐imidazolium or ammonium‐substitued counterpart CDs at 10 equivalent concentrations. The effective mobilities of all studied analytes were found to decrease with the concentration of AMBIMCD. Inclusion complexation in combination with eletrostatic interactions seemed to account for the enhanced chiral discrimination process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号