首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83371篇
  免费   11651篇
  国内免费   8206篇
化学   55237篇
晶体学   953篇
力学   5586篇
综合类   662篇
数学   9694篇
物理学   31096篇
  2024年   813篇
  2023年   1773篇
  2022年   2845篇
  2021年   3328篇
  2020年   3568篇
  2019年   3373篇
  2018年   2565篇
  2017年   2335篇
  2016年   3550篇
  2015年   3609篇
  2014年   4300篇
  2013年   5651篇
  2012年   6848篇
  2011年   7030篇
  2010年   4829篇
  2009年   4773篇
  2008年   4934篇
  2007年   4472篇
  2006年   4216篇
  2005年   3657篇
  2004年   2916篇
  2003年   2171篇
  2002年   1992篇
  2001年   1791篇
  2000年   1626篇
  1999年   1729篇
  1998年   1482篇
  1997年   1276篇
  1996年   1300篇
  1995年   1139篇
  1994年   1067篇
  1993年   918篇
  1992年   817篇
  1991年   705篇
  1990年   592篇
  1989年   502篇
  1988年   383篇
  1987年   362篇
  1986年   320篇
  1985年   320篇
  1984年   221篇
  1983年   192篇
  1982年   155篇
  1981年   124篇
  1980年   86篇
  1979年   53篇
  1978年   59篇
  1977年   52篇
  1975年   57篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
In this work, we have calculated boron-, aluminum-, titanium-, and nickel-doped La13 clusters by DMOL method based on the density-functional theory. Two doping modes are employed: surface and center doping. The boron, aluminum, and nickel atoms prefer to occupy the surface sites while the titanium atom prefers to occupy the center site. The doped La13 clusters with these four kinds of atoms have lower binding energy than pure La13 clusters. The icosahedral isomers are of lower binding energy than cubotahedral and decahedral isomers for La12B(-1), La12Al(-1), and La12Ni, while doping makes the cubotahedral La12Ti stable with a binding energy a little lower than icosahedral La12Ti. There are electronic shell effects in icosahedral La12B(-1) and La12Al(-1). The icosahedral La12B(-1) is promising to be formed during the doped process experimentally. Furthermore, we have also discussed the distorted structures of center doping by bond lengths, density of states, and charge transfers.  相似文献   
162.
Bifunctional linker-scaffolds (compounds 1-3) were designed to meet several criteria for solid-phase syntheses of bivalent ligands. They have two amine-functionalized arms that can be differentially protected. Elaboration of these arms could give ligand-pharmacophore dimers wherein the two active components are held reasonably rigidly at around 10 A separation. Their bifunctional design also enables reactions of libraries with libraries to amplify diversity in a truly combinatorial fashion. Molecules 1-3 are also designed so that cleavage of the linker liberates the scaffold entity into solution under conditions that create only byproducts that should not interfere with biological assays. Thus they contain 2-nitrobenzene sulfonamide components that cleave in the presence of good nucleophiles. In the event, the linker-scaffolds 1-3 were prepared (Schemes 1 and 2). The N-benzyl system 2 was shown to have good stability to the types of conditions that might be used to functionalize the scaffold arms and to be sufficiently labile to the cleavage nucleophile (vide infra). The nucleophiles generally used to cleave nitrobenzene sulfonamides either generate undesirable byproducts (thiophenol or alkane thiols) or proved to be insufficiently reactive for the required solid-phase transformations (n-propylamine). However, sodium sulfide was investigated as a new alternative and shown to be a highly reactive cleavage agent that gives only volatile byproducts and sodium hydroxide. It is suggested that sodium sulfide is a highly desirable nucleophile for cleavage of 2-nitrobenzene sulfonamides, in general. The linker-scaffolds 1-3 were used to prepare a small library of bivalent ligands targeted to a protein receptor having charged cavities separated by approximately 10 A. These systems were made from guanidine, pyridinium, carboxylic acid, and sulfonic acid constituents (Tables 1 and 2).  相似文献   
163.
Chen WZ  Ren T 《Inorganic chemistry》2003,42(26):8847-8852
Metathesis reactions between Ru(2)(DMBA)(4)Cl(2) (DMBA = N,N'-dimethylbenzamidinate) and MX (M = Na and K) yielded bis-adduct derivatives Ru(2)(DMBA)(4)X(2) (X = CN (1), N(3) (2), N(CN)(2) (3)). Metathesis reactions between Ru(2)(DMBA)(4)(NO(3))(2) and KI resulted in Ru(2)(DMBA)(4)I(2) (4). Compound 1 is diamagnetic, while compounds 2-4 are paramagnetic (S = 1). Both compounds 1 and 2 undergo two reversible one-electron processes, an oxidation and a reduction, while compound 3 features a quasireversible reduction. Single-crystal X-ray diffraction studies revealed that the Ru-Ru bond lengths are 2.4508(9), 2.3166(7), 2.304[1], and 2.328(1) A for compounds 1-4, respectively. Structural and electrochemical data clearly indicate that the axial ligands impart a significant influence on the electronic structures of diruthenium species.  相似文献   
164.
An experimental comparison of the gas‐phase reactivity of the 14‐electron reactive intermediates produced by phosphine dissociation from the first‐ and second‐generation ruthenium metathesis catalysts, (L)Cl2Ru?CHR (L=PCy3 or NHC), supports Grubbs's contention that the second‐generation catalysts show hundred‐fold higher phenomenological activity despite a slower phosphine dissociation because of a much more‐favorable partitioning of the 14‐electron active species towards product‐forming steps. The gas‐phase study finds, in ring‐opening metathesis of norbornene as well as acyclic metathesis of ethyl vinyl ether, that the first‐generation systems display evidence for a higher barrier above that for phosphine dissociation; the second‐generation systems, on the other hand, behave as if there is no significantly higher barrier.  相似文献   
165.
Adsorption of ammonia (NH3) onto activated carbons prepared from palm shells impregnated with sulfuric acid (H2SO4) was investigated. The effects of activation temperature and acid concentration on pore surface area development were studied. The relatively large micropore surface areas of the palm-shell activated carbons prepared by H2SO4 activation suggest their potential applications in gas adsorption. Adsorption experiments at a fixed temperature showed that the amounts of NH3 adsorbed onto the chemically activated carbons, unlike those prepared by CO2 thermal activation, were not solely dependent on the specific pore surface areas of the adsorbents. Further adsorption tests for a wide range of temperatures suggested combined physisorption and chemisorption of NH3. Desorption tests at the same temperature as adsorption and at an elevated temperature were carried out to confirm the occurrence of chemisorption due to the interaction between NH3 and some oxygen functional groups via hydrogen bonding. The surface functional groups on the adsorbent surface were detected by Fourier transform infrared spectroscopy. The amounts of NH3 adsorbed by chemisorption were correlated with the contents of elemental oxygen present in the adsorbents. Mechanisms for chemical activation and adsorption processes are proposed based on the observed phenomena.  相似文献   
166.
Cellulose hydrolysis using zinc chloride as a solvent and catalyst   总被引:1,自引:0,他引:1  
Cellulose gel with < 10% of crystallinity was prepared by treatment of microcrystalline cellulose, Avicel, with zinc chloride solution at a ratio of zinc chloride to cellulose from 1.5 to 18 (w/w). The presence of zinc ions in the cellulose gels enhanced the rate of hydrolysis and glucose yield. The evidence obtained from X-ray diffraction, iodine absorption experiments; and Nuclear Magnetic Resonance spectra analysis suggested the presence of zinc-cellulose complex after Avicel was treated with zinc chloride. Zinc-cellulose complex was more susceptible to hydrolysis than amorphous cellulose. Under the experimental condition, cellulose gels with zinc ions were hyrolyzed to glucose with 95% theoretical yield and a concentration of 14% (w/v) by cellulases within 20 h. The same gel was hydrolyzed by acid to glucose with 91.5% yield and a concentration of 13.4% (w/v).  相似文献   
167.
The neutral part of the acetone extract from the bark of Pinus luchuensis Mayer has been investigated and found to consist of alkanes (C22–C34) and triterpenes of serratene type. The triterpenes are 3β–methoxyserrat–14–en–21–one, serrat–14–en–3, 21–dione, 3β–hydroxyserrat–14–en–21–one, 3β–21α–dimethoxyserrat–l4–ene and 3β–methoxyserrat–14–en–21α–ol.  相似文献   
168.
In this study, the determination of 4-Bromoaniline (4-BA) in green algae Chlamydomonas reinhardtii (C. reinhardtii) was investigated by applying continuous-flow microextraction (CFME) combined with high-performance liquid chromatography (HPLC). Continuous-flow microextraction was conducted in a homemade glass chamber, i.e. the sample solution flowed through a constant volume drop of solvent in the chamber at a constant flow rate. The effects of different factors on extraction efficiencies were also investigated and these factors included the kind of extraction solvent, solvent drop volume, sample flow rate, extraction time and addition amount of salt. Under the optimum extraction conditions (extraction solvent, carbon tetrachloride; solvent drop volume, 3.5 μL; sample flow rate, 1.0 mL min−1; extraction time, 10 min; no addition of salt), the calibration plot was set up by plotting peak area against a series of 4-Bromoaniline concentrations (0.01–10 μg mL−1) in aqueous solution. The correlation coefficient (r) was 0.9990. The limit of detection (LOD) was 0.6 ng mL−1. The precision of this method was obtained by successive five time analyses of 100-ng mL−1 standard solution of 4-Bromoaniline, and the relative standard deviation (RSD) was 3.5%. The concentration factor was calculated by the ratio of peak area of the analyte obtained after and before extraction and found to be 10.6. 4-Bromoaniline residues in Chlamydomonas. reinhardtii cells and tap water samples were satisfactorily analyzed according to the method described above.  相似文献   
169.
A number of experimental parameters have been optimized for the separation of 26 metal ions, including alkali, alkaline earth, transition and lanthanide metal ions. Experimental parameters that were evaluated included nature of indirect-detection reagent, pH of electrolyte, concentration of complexing agent and nature of the surface of the capillary; unbonded and C1 and C18 bonded phases were studied. In addition the effect of internal diameter on linearity and signal-to-noise ratio was examined, and separation efficiency was determined for a variety of experimental conditions. Detection limits (signal-to-noise RATIO = 3) were ca. 1 μg/ml for the lanthanides, ca. 0.6 μg/ml for transition and alkaline earth ions and ca. 0.1–0.8 μg/ml for alkali metal ions. The average relative standard deviations of were 3.7, 5.1 and 2.5% on unbonded, C1 and C18 capillaries, respectively. Whereas conventional regression analysis suggested that the calibration curves were linear over the range of 1·10−5 to 4·10−4 mol/l, sensitivity plots showed that the results were actually linear to within 6% only over the range of 2.5·10−5 to 4·10−4 mol/l.  相似文献   
170.
Three density-functional methods (B3P86, B3PW91, and B3LYP) are employed to investigate the O–NO2 bond lengths, frontier orbital energies, and O–NO2 bond dissociation energies (BDEs) of n-propyl nitrate (NPN), isopropyl nitrate (IPN), 2-ethylhexyl nitrate (EHN), triethylene glycol dinitrate (Tri-EGDN), and tetraethylene glycol dinitrate (Tetra-EGDN). It is found that the O–NO2 bond lengthens (destabilizes) in the order of IPN, NPN, EHN, Tetra-EGDN, and Tri-EGDN. From the data of frontier orbital energies (EHOMO, ELUMO), and energy gaps (ΔE), we estimate the relative thermal stability ordering of five nitrates and their corresponding radicals. The predicted BDEs of O–NO2 bond in NPN, IPN, EHN, Tri-EGDN, and Tetra-EGDN, are 176.6, 174.5, 168.1, 156.1, and 159.3 kJ mol−1, respectively. Based on the finding that the present results of BDEs are well coincident with the experimental results of apparent activation energies from the literature, we can draw a conclusion that the experimental thermolysis of five nitrates is only unimolecular homolytical cleavage of the O–NO2 bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号