首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13423篇
  免费   426篇
  国内免费   140篇
化学   9078篇
晶体学   124篇
力学   268篇
数学   2335篇
物理学   2184篇
  2022年   133篇
  2021年   160篇
  2020年   162篇
  2019年   170篇
  2018年   175篇
  2017年   138篇
  2016年   329篇
  2015年   289篇
  2014年   338篇
  2013年   774篇
  2012年   741篇
  2011年   854篇
  2010年   535篇
  2009年   436篇
  2008年   720篇
  2007年   670篇
  2006年   742篇
  2005年   670篇
  2004年   606篇
  2003年   513篇
  2002年   499篇
  2001年   197篇
  2000年   179篇
  1999年   159篇
  1998年   154篇
  1997年   153篇
  1996年   203篇
  1995年   139篇
  1994年   131篇
  1993年   108篇
  1992年   120篇
  1991年   104篇
  1990年   105篇
  1989年   99篇
  1988年   87篇
  1987年   95篇
  1986年   79篇
  1985年   146篇
  1984年   149篇
  1983年   109篇
  1982年   118篇
  1981年   144篇
  1980年   149篇
  1979年   126篇
  1978年   123篇
  1977年   104篇
  1976年   111篇
  1975年   120篇
  1974年   104篇
  1973年   119篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Necroptosis is a form of programmed necrosis that is mediated by various cytokines and pattern recognition receptors (PRRs). Cells dying by necroptosis show necrotic phenotypes, including swelling and membrane rupture, and release damage-associated molecular patterns (DAMPs), inflammatory cytokines, and chemokines, thereby mediating extreme inflammatory responses. Studies on gene knockout or necroptosis-specific inhibitor treatment in animal models have provided extensive evidence regarding the important roles of necroptosis in inflammatory diseases. The necroptosis signaling pathway is primarily modulated by activation of receptor-interacting protein kinase 3 (RIPK3), which phosphorylates mixed-lineage kinase domain-like protein (MLKL), mediating MLKL oligomerization. In the necroptosis process, these proteins are fine-tuned by posttranslational regulation via phosphorylation, ubiquitination, glycosylation, and protein–protein interactions. Herein, we review recent findings on the molecular regulatory mechanisms of necroptosis.Subject terms: Apoptosis, Necroptosis, Glycosylation, Phosphorylation, Ubiquitylation  相似文献   
992.
Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1β production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1β and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.  相似文献   
993.
Journal of Radioanalytical and Nuclear Chemistry - The defects due to cold-rolling deformation in the advanced reduced-activation alloy (ARAA) have been analyzed using positron annihilation...  相似文献   
994.
Journal of Radioanalytical and Nuclear Chemistry - 89Zr is an emerging radionuclide with promising application in nuclear medicine for the non-invasive diagnosis of various cancers with PET...  相似文献   
995.
The bitter melon, Momordica charantia L., was once an important food and medicinal herb. Various studies have focused on the potential treatment of stomach disease with M. charantia and on its anti-diabetic properties. However, very little is known about the specific compounds responsible for its anti-inflammatory activities. In addition, the in vitro inhibitory effect of M. charantia on pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs) has not been reported. Phytochemical investigation of M. charantia fruit led to the isolation of 15 compounds (1−15). Their chemical structures were elucidated spectroscopically (one- and two-dimensional nuclear magnetic resonance) and with electrospray ionization mass spectrometry. The anti-inflammatory effects of the isolated compounds were evaluated by measuring the production of the pro-inflammatory cytokines interleukin IL-6, IL-12 p40, and tumor necrosis factor α (TNF-α) in LPS-stimulated BMDCs. The cucurbitanes were potent inhibitors of the cytokines TNF-α, IL-6, and IL-12 p40, indicating promising anti-inflammatory effects. Based on these studies and in silico simulations, we determined that the ligand likely docked in the receptors. These results suggest that cucurbitanes from M. charantia are potential candidates for treating inflammatory diseases.  相似文献   
996.
We have synthesized new magnetic resonance imaging (MRI) T1 contrast agents (CA1 and CA2) that permit the activatable recognition of the cellular vicinal thiol motifs of the protein thioredoxin. The contrast agents showed MR relaxivities typical of gadolinium complexes with a single water molecule coordinated to a Gd3+ center (i.e., ~4.54 mM−1s−1) for both CA1 and CA2 at 60 MHz. The contrast agent CA1 showed a ~140% relaxivity enhancement in the presence of thioredoxin, a finding attributed to a reduction in the flexibility of the molecule after binding to thioredoxin. Support for this rationale, as opposed to one based on preferential binding, came from 1H-15N-HSQC NMR spectral studies; these revealed that the binding affinities toward thioredoxin were almost the same for both CA1 and CA2. In the case of CA1, T1-weighted phantom images of cancer cells (MCF-7, A549) could be generated based on the expression of thioredoxin. We further confirmed thioredoxin expression-dependent changes in the T1-weighted contrast via knockdown of the expression of the thioredoxin using siRNA-transfected MCF-7 cells. The nontoxic nature of CA1, coupled with its relaxivity features, leads us to suggest that it constitutes a first-in-class MRI T1 contrast agent that allows for the facile and noninvasive monitoring of vicinal thiol protein motif expression in live cells.  相似文献   
997.
The tau protein is a highly soluble and natively unfolded protein. Under pathological conditions, tau undergoes multiple post-translational modifications (PTMs) and conformational changes to form insoluble filaments, which are the proteinaceous signatures of tauopathies. To dissect the crosstalk among tau PTMs during the aggregation process, we phosphorylated and ubiquitylated recombinant tau in vitro using GSK3β and CHIP, respectively. The resulting phospho–ub-tau contained conventional polyubiquitin chains with lysine 48 linkages, sufficient for proteasomal degradation, whereas unphosphorylated ub-tau species retained only one–three ubiquitin moieties. Mass-spectrometric analysis of in vitro reconstituted phospho–ub-tau revealed seven additional ubiquitylation sites, some of which are known to stabilize tau protofilament stacking in the human brain with tauopathy. When the ubiquitylation reaction was prolonged, phospho–ub-tau transformed into insoluble hyperubiquitylated tau species featuring fibrillar morphology and in vitro seeding activity. We developed a small-molecule inhibitor of CHIP through biophysical screening; this effectively suppressed tau ubiquitylation in vitro and delayed its aggregation in cultured cells including primary cultured neurons. Our biochemical findings point to a “multiple-hit model,” where sequential events of tau phosphorylation and hyperubiquitylation function as a key driver of the fibrillization process, thus indicating that targeting tau ubiquitylation may be an effective strategy to alleviate the course of tauopathies.

Multiple-hit model for tau aggregation, where sequential events of tau phosphorylation and hyperubiquitylation function as a key driver of the fibrillization process.  相似文献   
998.
Since ancient times, various herbs have been used in Asia, including Korea, China, and Japan, for wound healing and antiaging of the skin. In this study, we manufactured and chemically analyzed a novel distillate obtained from a fermented mixture of nine anti-inflammatory herbs (Angelica gigas, Lonicera japonica, Dictamnus dasycarpus Turcz., D. opposita Thunb., Ulmus davidiana var. japonica, Hordeum vulgare var. hexastichon Aschers., Xanthium strumarium L., Cnidium officinale, and Houttuynia cordata Thunb.). The fermentation of natural plants possesses beneficial effects in living systems. These activities are attributed to the chemical conversion of the parent plants to functional constituents which show more potent biological activities. In our current study, the distillate has been manufactured after fermenting the nine oriental medical plants with Lactobacillus fermentum, followed by distilling. We analyzed the chemical ingredients involved in the distillate and evaluated the effects of topical application of the distillate on ultraviolet B (UVB)-induced skin damage in Institute of Cancer Research (ICR) mice. Topical application of the distillate significantly ameliorated the macroscopic and microscopic morphology of the dorsal skin against photodamage induced by UVB radiation. Additionally, our current results showed that topical application of the distillate alleviated collagen disruption and reduced levels of proinflammatory cytokines (tumor necrosis factor alpha and interleukin 1 β expressions) in the dorsal skin against UVB radiation. Taken together, our current findings suggest that the distillate has a potential to be used as a material to develop a photoprotective adjuvant.  相似文献   
999.
A photoluminescent bimetallic cluster [Ag10Cu6(bdppthi)2(C≡CPh)12(MeOH)2(H2O)](ClO4)4 ( 1 , bdppthi=N,N’-bis(diphenylphosphanylmethyl)-tetrahydroimidazole} was synthesized from the PNNP type ligand bdppthi generated in-situ. Upon excitation at 365 nm, 1 exhibited strong phosphorescent emission at 630 nm, which was selectively quenched by NH3 in air or water. The sensing of NH3 was rapid and recoverable, with detection limits of 53 ppm (v/v) in N2 and 21 μmol/L (0.36 ppm, w/w) for NH3 ⋅ H2O in water. Cluster 1 could potentially serve as a bifunctional chemical sensor for the efficient detection of ammonia in waste-gas and waste-water.  相似文献   
1000.
Here, we report the synthesis of a truncated cone-shaped triangular porphyrinic macrocycle, P3L3 , via a single step imine condensation of a cis-diaminophenylporphyrin and a bent dialdehyde-based linker as building units. X-ray diffraction analysis reveals that the truncated cone-shaped P3L3 molecules are stacked on top of each other by ππ and CH⋯π interactions, to form 1.7 nm wide hollow columns in the solid state. The formation of the triangular macrocycle is corroborated by quantum chemical calculations. The permanent porosity of the P3L3 crystals is demonstrated by several gas sorption experiments and powder X-ray diffraction analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号