首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  国内免费   1篇
化学   75篇
晶体学   1篇
力学   2篇
数学   12篇
物理学   15篇
  2024年   1篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   11篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
91.
γ-Valerolactone (GVL) can be obtained by efficient hydrogenation of levulinic acid using ruthenium-based catalysts in an aqueous medium. This paper reports an in-depth study on the activity and selectivity of Ru catalysts supported on zirconia-alumina, focusing on the effect of Ru concentration (0.5, 1.5 and 3 wt. % of Ru) and the selection of operational reaction variables. The results showed that the activity strongly depends on the number and oxidation state of the supported ruthenium particles. The most active catalyst, Ru3/ZA, presented the highest number of nanometric particles of zerovalent Ru and the highest number of acid sites. This catalyst gave ca. 100 % selectivity towards GVL, at high conversion of levulinic acid (over 99 %) under the best operating conditions evaluated (120 °C, 3 MPa H2 pressure, 1 h of reaction, and 0.1 g of catalyst). In addition, this catalyst kept high levels of conversion and selectivity after successive reuse cycles.  相似文献   
92.
In this paper, we consider a theoretical and numerical study of the Stefan problem with convection, described by the Navier–Stokes equations with no‐slip boundary conditions. The mathematical formulation adopted is based on the enthalpy method. The existence of a weak solution is proved in the bidimensional case. The numerical effectiveness of the model considered is confirmed by some numerical results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
93.
In this paper we show some regularity and uniqueness results of weak solutions of the Stefan problem with convection, in two and three-dimensional cases. The mathematical formulation adopted is based on the enthalpy method and the convection is described by the Navier-Stokes system.  相似文献   
94.
The copper(I) and copper(II) complexes with the nitrogen donor ligands bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-BB), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB), N-acetyl-2-BB (AcBB), and tris[2-(1-methylbenzimidazol-2-yl)ethyl]nitromethane (TB) have been studied as models for copper nitrite reductase. The copper(II) complexes form adducts with nitrite and azide that have been isolated and characterized. The Cu(II)-(1-BB) and Cu(II)-AcBB complexes are basically four-coordinated with weak axial interaction by solvent or counterion molecules, whereas the Cu(II)-(2-BB) and Cu(II)-TB complexes prefer to assume five-coordinate structures. A series of solid state structures of Cu(II)-(1-BB) and -(2-BB) complexes have been determined. [Cu(1-BB)(DMSO-O)(2)](ClO(4))(2): triclinic, P&onemacr; (No. 2), a = 9.400(1) ?, b = 10.494(2) ?, c = 16.760(2) ?, alpha = 96.67(1) degrees, beta = 97.10(1) degrees, gamma = 108.45(1) degrees, V = 1534.8(5) ?(3), Z = 2, number of unique data [I >/= 3sigma(I)] = 4438, number of refined parameters = 388, R = 0.058. [Cu(1-BB)(DMSO-O)(2)](BF(4))(2): triclinic, P&onemacr; (No. 2), a = 9.304(5) ?, b = 10.428(4) ?, c = 16.834(8) ?, alpha = 96.85(3) degrees, beta = 97.25(3) degrees, gamma = 108.21(2) degrees, V = 1517(1) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3388, number of refined parameters = 397, R = 0.075. [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 7.533(2) ?, b = 8.936(1) ?, c = 19.168(2) ?, alpha = 97.66(1) degrees, beta = 98.62(1) degrees, gamma = 101.06(1) degrees, V = 1234.4(7) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3426, number of refined parameters = 325, R = 0.081. [Cu(2-BB)(MeOH)(ClO(4))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 8.493(3) ?, b = 10.846(7) ?, c = 14.484(5) ?, alpha = 93.71(4) degrees, beta = 103.13(3) degrees, gamma = 100.61(4) degrees, V = 1270(1) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2612, number of refined parameters = 352, R = 0.073. [Cu(2-BB)(N(3))](ClO(4)): monoclinic, P2(1)/n (No. 14), a = 12.024(3) ?, b = 12.588(5) ?, c = 15.408(2) ?, beta = 101,90(2) degrees, V = 2282(1) ?(3), Z = 4, number of unique data [I >/= 2sigma(I)] = 2620, number of refined parameters = 311, R = 0.075. [Cu(2-BB)(NO(2))](ClO(4))(MeCN): triclinic, P&onemacr; (No. 2), a = 7.402(2) ?, b = 12.500(1) ?, c = 14.660(2) ?, alpha = 68.14(1) degrees, beta = 88.02(2) degrees, gamma = 78.61(1) degrees, V = 1233.0(4) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2088, number of refined parameters = 319, R = 0.070. In all the complexes the 1-BB or 2-BB ligands coordinate the Cu(II) cations through their three donor atoms. The complexes with 2-BB appear to be more flexible than those with 1-BB. The nitrito ligand is bidentate in [Cu(2-BB)(NO(2))](ClO(4))(MeCN) and essentially monodentate in [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)). The copper(I) complexes exhibit nitrite reductase activity and react rapidly with NO(2)(-) in the presence of stoichiometric amounts of acid to give NO and the corresponding copper(II) complexes. Under the same conditions the reactions between the copper(I) complexes and NO(+) yield the same amount of NO, indicating that protonation and dehydration of bound nitrite are faster than its reduction. The NO evolved from the solution was detected and quantitated as the [Fe(EDTA)(NO)] complex. The order of reactivity of the Cu(I) complexes in the nitrite reduction process is [Cu(2-BB)](+) > [Cu(1-BB)](+) > [Cu(TB)](+) > [Cu(AcBB)](+).  相似文献   
95.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   
96.
Dopamine (DA) is the most important catecholamine in the brain, as it is the most abundant and the precursor of other neurotransmitters. Degeneration of nigrostriatal neurons of substantia nigra pars compacta in Parkinson's disease represents the best‐studied link between DA neurotransmission and neuropathology. Catecholamines are reactive molecules that are handled through complex control and transport systems. Under normal conditions, small amounts of cytosolic DA are converted to neuromelanin in a stepwise process involving melanization of peptides and proteins. However, excessive cytosolic or extraneuronal DA can give rise to nonselective protein modifications. These reactions involve DA oxidation to quinone species and depend on the presence of redox‐active transition metal ions such as iron and copper. Other oxidized DA metabolites likely participate in post‐translational protein modification. Thus, protein–quinone modification is a heterogeneous process involving multiple DA‐derived residues that produce structural and conformational changes of proteins and can lead to aggregation and inactivation of the modified proteins.  相似文献   
97.
A copper-based chemically modified glassy carbon electrode (GC-Cu) was developed to be used as an amperometric sensor for electrochemically detecting several sulfur-containing compounds in alkaline media. Under optimised flow injection conditions the calibration curves for sulfite, sulfide, thiosulfate, cysteine, cystine, etc., were linear over three orders of magnitude of concentration. Detection limits were of the order of 0.04-1.5 microM. A simple and rapid method for determining sulfite in red and white wines by anion-exchange chromatography with electrochemical detection is described.  相似文献   
98.
The Gibbs sampler is a popular Markov chain Monte Carlo routine for generating random variates from distributions otherwise difficult to sample. A number of implementations are available for running a Gibbs sampler varying in the order through which the full conditional distributions used by the Gibbs sampler are cycled or visited. A common, and in fact the original, implementation is the random scan strategy, whereby the full conditional distributions are updated in a randomly selected order each iteration. In this paper, we introduce a random scan Gibbs sampler which adaptively updates the selection probabilities or “learns” from all previous random variates generated during the Gibbs sampling. In the process, we outline a number of variations on the random scan Gibbs sampler which allows the practitioner many choices for setting the selection probabilities and prove convergence of the induced (Markov) chain to the stationary distribution of interest. Though we emphasize flexibility in user choice and specification of these random scan algorithms, we present a minimax random scan which determines the selection probabilities through decision theoretic considerations on the precision of estimators of interest. We illustrate and apply the results presented by using the adaptive random scan Gibbs sampler developed to sample from multivariate Gaussian target distributions, to automate samplers for posterior simulation under Dirichlet process mixture models, and to fit mixtures of distributions.  相似文献   
99.
We have studied Fe films on Ar+ ion sputtered highly oriented pyrolitic graphite (HOPG) using scanning tunnelling microscopy (STM). The adsorbed Fe atoms form nanoparticles uniformly distributed over the substrate surface with narrow size distribution. Comparing these data with Fe deposited on non-sputtered HOPG indicates the role of substrate defects, acting as nucleation sites, on the overall film structure. However, the shape and size of individual defects do not seem to influence the shape of the nanoparticles. The correlation between the Fe film morphology and the sputtered substrate morphology is discussed taking into account the different capturing properties of sputtering-induced defects.  相似文献   
100.
The new poly-imidazole N(8) ligand (S)-2-piperazinemethanamine-1,4-bis[2-((N-(1-acetoxy-3-(1-methyl-1H-imidazol-4-yl))-2-(S)-propyl)-(N-(1-methyl-1H-imidazol-2-ylmethyl)))ethyl]-N-(phenylmethyl)-N-(acetoxy), also named (S)-Pz-(C2-(HisIm))(2) (L), containing three chiral (S) centers, was obtained by a multi-step synthesis and used to prepare dinuclear [Cu(2)(L)](4+) and trinuclear [Cu(3)(L)](6+) copper(II) complexes. Low-temperature EPR experiments performed on [Cu(2)(L)](4+) demonstrated that the two S = ? centers behaved as independent paramagnetic units, while the EPR spectra used to study the trinuclear copper complex, [Cu(3)(L)](6+), were consistent with a weakly coupled three-spin ? system. Theoretical models for the two complexes were obtained by DFT/RI-BP86/TZVP geometry optimization, where the structural and electronic characteristics nicely supported the EPR experimental findings. In addition, the theoretical analysis unveiled that the conformational flexibility encoded in both [Cu(2)(L)](4+) and [Cu(3)(L)](6+) arises not only from the presence of several σ-bonds and the bulky residues attached to the (S)-Pz-(C2-(HisIm))(2) ligand scaffold, but also from the poor coordination ability of the tertiary amino groups located in the ligand side-chains containing the imidazole units towards the copper(II) ions. Both the dinuclear and trinuclear complexes are efficient catalysts in the stereoselective oxidation of several catechols and flavonoid compounds, yielding the corresponding quinones. The structural features of the substrate-catalyst adduct intermediates were assessed by searching the conformational space of the molecule through MMFF94/Monte Carlo (MMFF94/MC) methods. The conformational flexibility of the bound ligand in the complexes proves to be beneficial for substrate binding and recognition. For the dinuclear complex, chiral recognition of the optically active substrates derives from weak electrostatic interactions between bound substrates and folded regions of the ligand scaffold. For the trinuclear complex, in the case of L/D-Dopa, the chiral recognition has a remarkable stereoselectivity index of 75%, the highest so far reported for this type of reaction. Here the dominant contribution to stereoselectivity arises from the direct interaction between a donor group (the Dopa carboxylate) far from the substrate reaction site (the catechol ring) with the additional (third) copper center not involved in the oxidative catalysis. On the other hand, in the case of bulky substrates, such as L/D-catechin, the observed poor substrate recognition is associated with much weaker interactions between the chiral regions of the complex and the chiral part of the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号