首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6515篇
  免费   254篇
  国内免费   60篇
化学   4625篇
晶体学   22篇
力学   152篇
数学   1077篇
物理学   953篇
  2024年   7篇
  2023年   44篇
  2022年   147篇
  2021年   203篇
  2020年   135篇
  2019年   138篇
  2018年   136篇
  2017年   109篇
  2016年   253篇
  2015年   243篇
  2014年   255篇
  2013年   417篇
  2012年   448篇
  2011年   532篇
  2010年   323篇
  2009年   256篇
  2008年   460篇
  2007年   413篇
  2006年   418篇
  2005年   346篇
  2004年   301篇
  2003年   223篇
  2002年   203篇
  2001年   62篇
  2000年   72篇
  1999年   42篇
  1998年   65篇
  1997年   56篇
  1996年   62篇
  1995年   36篇
  1994年   33篇
  1993年   34篇
  1992年   39篇
  1991年   33篇
  1990年   19篇
  1989年   14篇
  1988年   10篇
  1987年   14篇
  1986年   17篇
  1985年   25篇
  1984年   31篇
  1983年   17篇
  1982年   18篇
  1981年   22篇
  1980年   17篇
  1979年   13篇
  1978年   17篇
  1977年   15篇
  1976年   5篇
  1973年   9篇
排序方式: 共有6829条查询结果,搜索用时 15 毫秒
901.
The stability of DNA is highly dependent on the properties of the surrounding solvent, such as ionic strength, pH, and the presence of denaturants and osmolytes. Addition of pyridine is known to unfold DNA by replacing π–π stacking interactions between bases, stabilizing conformations in which the nucleotides are solvent exposed. We show here experimental and theoretical evidences that pyridine can change its role and in fact stabilize the DNA under acidic conditions. NMR spectroscopy and MD simulations demonstrate that the reversal in the denaturing role of pyridine is specific, and is related to its character as pseudo groove binder. The present study sheds light on the nature of DNA stability and on the relationship between DNA and solvent, with clear biotechnological implications.  相似文献   
902.
Controlling the synthesis of stable metal nanoparticles in water is a current challenge in nanochemistry. The strategy presented herein uses sulfonated N‐heterocyclic carbene (NHC) ligands to stabilize platinum nanoparticles (PtNPs) in water, under air, for an indefinite time period. The particles were prepared by thermal decomposition of a preformed molecular Pt complex containing the NHC ligand and were then purified by dialysis and characterized by TEM, high‐resolution TEM, and spectroscopic techniques. Solid‐state NMR studies showed coordination of the carbene ligands to the nanoparticle surface and allowed the determination of a 13C–195Pt coupling constant for the first time in a nanosystem (940 Hz). Additionally, in one case a novel structure was formed in which platinum(II) NHC complexes form a second coordination sphere around the nanoparticle.  相似文献   
903.
The stability trends across the lanthanide series of complexes with the polyaminocarboxylate ligands TETA4? (H4TETA=2,2′,2′′,2′′′‐(1,4,8,11‐tetraazacyclotetradecane‐1,4,8,11‐tetrayl)tetraacetic acid), BCAED4? (H4BCAED=2,2′,2′′,2′′′‐{[(1,4‐diazepane‐1,4‐diyl)bis(ethane‐2,1‐diyl)]bis(azanetriyl)}tetraacetic acid), and BP18C62? (H2BP18C6=6,6′‐[(1,4,10,13‐tetraoxa‐7,16‐diazacyclooctadecane‐7,16‐diyl)bis(methylene)]dipicolinic acid) were investigated using DFT calculations. Geometry optimizations performed at the TPSSh/6‐31G(d,p) level, and using a 46+4fn ECP for lanthanides, provide bond lengths of the metal coordination environments in good agreement with the experimental values observed in the X‐ray structures. The contractions of the Ln3+ coordination spheres follow quadratic trends, as observed previously for different isostructural series of complexes. We show here that the parameters obtained from the quantitative analysis of these data can be used to rationalize the observed stability trends across the 4f period. The stability trends along the lanthanide series were also evaluated by calculating the free energy for the reaction [La( L )]n+/?(sol)+Ln3+(sol)→[Ln( L )]n+/?(sol)+La3+(sol). A parameterization of the Ln3+ radii was performed by minimizing the differences between experimental and calculated standard hydration free energies. The calculated stability trends are in good agreement with the experimental stability constants, which increase markedly across the series for BCAED4? complexes, increase smoothly for the TETA4? analogues, and decrease in the case of BP18C62? complexes. The resulting stability trend is the result of a subtle balance between the increased binding energies of the ligand across the lanthanide series, which contribute to an increasing complex stability, and the increase in the absolute values of hydration energies along the 4f period.  相似文献   
904.
A simple and inexpensive method is reported for the long‐term stabilization of enzymes and other unstable reagents in premeasured quantities in water‐soluble tablets (cast, not compressed) made with pullulan, a nonionic polysaccharide that forms an oxygen impermeable solid upon drying. The pullulan tablets dissolve in aqueous solutions in seconds, thereby facilitating the easy execution of bioassays at remote sites with no need for special reagent handling and liquid pipetting. This approach is modular in nature, thus allowing the creation of individual tablets for enzymes and their substrates. Proof‐of‐principle demonstrations include a Taq polymerase tablet for DNA amplification through PCR and a pesticide assay kit consisting of separate tablets for acetylcholinesterase and its chromogenic substrate, indoxyl acetate, both of which are highly unstable. The encapsulated reagents remain stable at room temperature for months, thus enabling the room‐temperature shipping and storage of bioassay components.  相似文献   
905.
Lanthanide complexes (Ln=Eu, Tb, and Yb) that are based on a C2‐symmetric cyclen scaffold were prepared and characterized. The addition of fluoride anions to aqueous solutions of the complexes resulted in the formation of dinuclear supramolecular compounds in which the anion is confined into the cavity that is formed by the two complexes. The supramolecular assembly process was monitored by UV/Vis absorption, luminescence, and NMR spectroscopy and high‐resolution mass spectrometry. The X‐ray crystal structure of the europium dimer revealed that the architecture of the scaffold is stabilized by synergistic effects of the Eu? F? Eu bridging motive, π stacking interactions, and a four‐component hydrogen‐bonding network, which control the assembly of the two [EuL] entities around the fluoride ion. The strong association in water allowed for the luminescence sensing of fluoride down to a detection limit of 24 nM .  相似文献   
906.
Brazil is one of the countries most affected by abuse of stimulant medications by professional drivers, especially fenproporex, amfepramone and mazindol. Even though their sale is banned, they can be found in illegal markets, such as those located on the country's borders. The use of oral fluid to monitor drug levels has many advantages over plasma and urine because it is noninvasive, easier to collect and more difficult to adulterate. The aim of this study was to develop and validate a sensitive and specific method to quantify mazindol in human oral fluid by liquid chromatography–mass spectrometry (LC‐MS). The LC system consisted of an LC‐MS system operated in selected ion monitoring mode. The mobile phase was composed of water at pH 4.0, acetonitrile and methanol (60:15:25 v/v/v) at a flow rate of 1.0 mL/min and propranolol was used as internal standard. Total running time was 10 min. The lower limit of quantification was 0.2 ng/mL and the method exhibited good linearity within the 0.2–20 ng/mL range (r = 0.9987). A rapid, specific, sensitive, linear, precise and accurate method was developed for determination of mazindol in human oral fluid according to European Medicines Agency guidelines, and is suitable for monitoring mazindol levels in oral fluid of professional drivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
907.
A novel synthesis of 2‐vinyldihydropyrans and dihydro‐1,4‐oxazines (morpholine derivatives) from alkynals and alkynones has been developed. The cyclizations require a mild generation of catalytic ruthenium carbenes from terminal alkynes and (trimethylsilyl)diazomethane followed by trapping with carbonyl nucleophiles. Mechanistic aspects of the new cyclizations are discussed.  相似文献   
908.
An efficient and safe method to deliver active proteins into the cytosol of targeted cells is highly desirable to advance protein‐based therapeutics. A novel protein delivery platform has been created by combinatorial design of cationic lipid‐like materials (termed “lipidoids”), coupled with a reversible chemical protein engineering approach. Using ribonuclease A (RNase A) and saporin as two representative cytotoxic proteins, the combinatorial lipidoids efficiently deliver proteins into cancer cells and inhibit cell proliferation. A study of the structure–function relationship reveals that the electrostatic and hydrophobic interactions between the lipidoids and the protein play a vital role in the formation of protein–lipidoid nanocomplexes and intracellular delivery. A representative lipidoid (EC16‐1) protein nanoparticle formulation inhibits cell proliferation in vitro and suppresses tumor growth in a murine breast cancer model.  相似文献   
909.
Nanoparticles of cobalt phosphide, CoP, have been prepared and evaluated as electrocatalysts for the hydrogen evolution reaction (HER) under strongly acidic conditions (0.50 M H2SO4, pH 0.3). Uniform, multi‐faceted CoP nanoparticles were synthesized by reacting Co nanoparticles with trioctylphosphine. Electrodes comprised of CoP nanoparticles on a Ti support (2 mg cm?2 mass loading) produced a cathodic current density of 20 mA cm?2 at an overpotential of ?85 mV. The CoP/Ti electrodes were stable over 24 h of sustained hydrogen production in 0.50 M H2SO4. The activity was essentially unchanged after 400 cyclic voltammetric sweeps, suggesting long‐term viability under operating conditions. CoP is therefore amongst the most active, acid‐stable, earth‐abundant HER electrocatalysts reported to date.  相似文献   
910.
The insertion of the single‐molecule magnet (SMM) [MnIII(salen)(H2O)]22+ (salen2?=N,N′‐ethylenebis‐(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [MnIII(salen)(H2O)]2[MnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 1 ). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [MnIII(salen)(H2O)]2[ZnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 2 ) and [InIII(sal2‐trien)][MnIICrIII(ox)3] ? (H2O)0.25 ? (CH3OH)0.25 ? (CH3CN)0.25 ( 3 ), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of CrIII affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic MnIICrIII network is observed at Tc=5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3 . In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near‐reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号