首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   3篇
数学   2篇
物理学   17篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2004年   1篇
  2003年   4篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1992年   1篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
21.
A 140-GHz, 1.5-MW, TE28,16-coaxial cavity gyrotron with a dual RF beam output has been designed, built, and tested. For the first time, the generated RF power has been split into two parts and coupled out through two RF output windows in order to reduce the power loading in the windows. The quasioptical output system is based on a two-step mode conversion scheme. First, the cavity mode TE-28,16 is converted into its degenerate whispering gallery mode TE+76,2 using a rippled-wall mode converter. Then, this mode is transformed into two TEM00 output wave beams. A maximum rf output power of about 950 kW with an output efficiency of 20% has been measured. According to numerical calculations, an rf power above 1.5 MW is expected to be generated in the cavity. Even if all losses are taken into account, a discrepancy between experiment and calculations remains. The power deficit seems to be partly caused by the influence of the stray radiation captured inside the tube. However, the two main reasons are probably an incomplete mode conversion from TE-28,16 to TE+76,2 and a large energy spread of the electron beam due to trapped electrons. An increased amount of captured stray radiation resulted in a reduced stability of operation. A single-stage depressed collector was used successfully, increasing the RF output efficiency from 20% to 29%  相似文献   
22.
The design of a 1.5-MW, 140-GHz, TE-28,16-coaxial cavity gyrotron is presented and results of experimental operation are given. A cavity with a cylindrical outer wall and a radially tapered inner rod with longitudinal corrugations was used. A maximum output power of 1.17 MW has been measured in the design mode with an efficiency of 27.2%. Single-mode operation has been found over a wide range of operating parameters. The experimental values agree well with the results of multimode calculations. Frequency-step tuning has been performed between 115.6 and 164.2 GHz. In particular, an output power of 0.9 MW has ben measured in the TE25,14 mode at 123.0 GHz and 1.16 MW in the TE32,18 mode at 158.9 GHz. At frequencies its with strong window reflections the parameter range for which stable operation is possible is reduced significantly. In order to obtain results relevant for a technical realization of a continuously operated gyrotron, a tube with a radial radio frequency (RF)-beam output through two output windows and a single-stage depressed collector has been designed and is under fabrication. A two-step mode conversion scheme-TE- 28,16 to Te+76.2 to TEM00-which generates two narrowly directed (60° at the launcher) output wavebeams has been chosen for a quasioptical (q,o) mode converter system. A conversion efficiency of 94% is expected  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号