首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77740篇
  免费   318篇
  国内免费   374篇
化学   23950篇
晶体学   787篇
力学   6721篇
数学   31927篇
物理学   15047篇
  2018年   10431篇
  2017年   10259篇
  2016年   6050篇
  2015年   833篇
  2014年   283篇
  2013年   304篇
  2012年   3758篇
  2011年   10482篇
  2010年   5615篇
  2009年   6025篇
  2008年   6570篇
  2007年   8729篇
  2006年   199篇
  2005年   1285篇
  2004年   1516篇
  2003年   1958篇
  2002年   1003篇
  2001年   242篇
  2000年   285篇
  1999年   154篇
  1998年   190篇
  1997年   142篇
  1996年   196篇
  1995年   115篇
  1994年   74篇
  1993年   95篇
  1992年   56篇
  1991年   63篇
  1990年   50篇
  1989年   58篇
  1988年   58篇
  1987年   57篇
  1986年   57篇
  1985年   50篇
  1984年   43篇
  1983年   37篇
  1982年   43篇
  1981年   40篇
  1980年   47篇
  1979年   45篇
  1978年   38篇
  1973年   26篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1910年   24篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Layered lithium-rich oxide, 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2, is synthesized in a mixed molten salt of KCl and LiCl under 750 °C. Its morphology and structure are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption isotherm, and its performances as cathode of lithium-ion battery are investigated by charge–discharge test and electrochemical impedance spectroscopy, with a comparison of the samples synthesized via solid-state reaction. It is found that the resulting product consists of uniform nanoparticles, 50 nm in average, which possesses a well crystallite layered structure although its synthesis temperature is low and thus exhibits excellent cyclic stability and rate capability. The resulting product delivers an initial discharge capacity of 268 mAh g?1 at 0.1 C and has a capacity retention of 82% after 100 cycles at 1 C, compared to the 243 mAh g?1 and 73% for the sample synthesized by solid-state reaction under 900 °C.  相似文献   
992.
In this paper, Mg-doped ZnO nanoparticles were synthesized by the facile sol–gel method. The crystalline structure, characteristic absorption bands and morphology of the obtained Mg-doped ZnO nanoparticles were studied by XRD, FTIR and TEM. The thermal degradation behaviour of the samples was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The effect of Mg concentrations and annealing temperatures on the antibacterial properties of the obtained nanoparticles was investigated in detail. The results indicated that doping Mg ions into ZnO lattice could enhance its antibacterial activity. Antibacterial assay demonstrated that Mg-doped ZnO with 7% Mg content annealed at 400 °C had the strongest antibacterial activity against Listeria monocytogenes (98.7%). This study indicated that the inhibition rate of ZnO nanoparticles increased with the formation of granular structure and the decrease of ZnO size due to the doping of Mg ions into the ZnO lattice.  相似文献   
993.
The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of 600 s in the solar corona, producing nanoflares in the energy range 10 21–10 23 erg /s which matches with Yohkoh X-ray observations.  相似文献   
994.
In this paper, we present a generalized unified method for finding multiwave solutions of the time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations. The fractional derivatives are described in the modified Riemann–Liouville sense. The fractional complex transform has been suggested to convert fractional-order differential equations with modified Riemann–Liouville derivatives into integer-order differential equations, and the reduced equations can be solved by symbolic computation. Multiauxiliary equations have been introduced in this method to obtain not only multisoliton solutions but also multiperiodic or multielliptic solutions. It is shown that the considered method is very effective and convenient for solving wide classes of nonlinear partial differential equations of fractional order.  相似文献   
995.
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware–software co-simulation and the results are presented.  相似文献   
996.
The partition function of an N=2{\mathcal {N}=2} gauge theory in the Ω-background satisfies, for generic value of the parameter b = -e1/e2{\beta=-{\epsilon_1}/{\epsilon_2}} , the, in general extended, but otherwise β-independent, holomorphic anomaly equation of special geometry. Modularity together with the (β-dependent) gap structure at the various singular loci in the moduli space completely fixes the holomorphic ambiguity, also when the extension is non-trivial. In some cases, the theory at the orbifold radius, corresponding to β = 2, can be identified with an “orientifold” of the theory at β = 1. The various connections give hints for embedding the structure into the topological string.  相似文献   
997.
The increasing use of nanopesticides has raised concerns about their effects on crop plants and the impact of human health as well as ecological effects. While increased uptake of metal ions has been observed before, to date, very few studies have demonstrated the presence of nanoparticles in edible tissues. Single-particle inductively coupled plasma–mass spectrometry (sp-ICP-MS) has been suggested as a powerful tool to detect inorganic nanoparticles (NPs) in environmental samples. Here, we exposed edible plant tissues from lettuce, kale, and collard green to nano-CuO, simulating its use as a nanopesticide. We applied sp-ICP-MS to demonstrate the presence of nanoparticles, both in the water used to rinse crop leaf surfaces exposed to nano-CuO and within the leaf tissues. Lettuces retained the highest amounts of nCuO NPs on the leaf surface, followed by collard green and then kale. Surface hydrophilicity and roughness of the leaf surfaces played an important role in retaining nano-CuO. The results indicate that most of the nanoparticles are removed via washing, but that a certain fraction is taken up by the leaves and can result in human exposure, albeit at low levels.
Graphical abstract ?
  相似文献   
998.
Novel feather duster-like nickel sulfide (NiS) @ molybdenum sulfide (MoS2) with hierarchical array structure is synthesized via a simple one-step hydrothermal method, in which a major structure of rod-like NiS in the center and a secondary structure of MoS2 nanosheets with a thickness of about 15–55 nm on the surface. The feather duster-like NiS@MoS2 is employed as the counter electrode (CE) material for the dye-sensitized solar cell (DSSC), which exhibits superior electrocatalytic activity due to its feather duster-like hierarchical array structure can not only support the fast electron transfer and electrolyte diffusion channels, but also can provide high specific surface area (238.19 m2 g?1) with abundant active catalytic sites and large electron injection efficiency from CE to electrolyte. The DSSC based on the NiS@MoS2 CE achieves a competitive photoelectric conversion efficiency of 8.58%, which is higher than that of the NiS (7.13%), MoS2 (7.33%), and Pt (8.16%) CEs under the same conditions.
Graphical abstract Novel feather duster-like NiS@MoS2 hierarchical structure array with superior electrocatalytic activity was fabricated by a simple one-step hydrothermal method.
  相似文献   
999.
This work presents the synthesis of magnetite nanoparticle (MNP) coated with poly(N,N-diethylaminoethyl methacrylate)-b-poly(N-isopropyl acrylamide-st-thiolactone acrylamide) (PDEAEMA-b-P(NIPAAm-st-TlaAm) copolymer and its use in controlled drug release and bio-conjugation. TlaAm units in the copolymer were ring-opened with various alkyl amines to form thiol groups (-SH), followed by thiol-ene coupling reactions with acrylamide-coated MNP and then quaternized to obtain cationic copolymer-MNP assemblies (the size <?200 nm/cluster). The use of alkyl amines having various chain lengths (e.g., 1-propylamine, 1-octylamine, or 1-dodecylamine) in the nucleophilic ring-opening reactions of the thiolactone rings affected their magnetic separation ability, water dispersibility, and release rate of doxorubicin model drug. In all cases, when increasing the temperature, they showed a thermo-responsive behavior as indicated by the decrease in hydrodynamic size and the accelerated drug release rate. These copolymer-MNP assemblies could be used as a novel platform with thermal-triggering controlled drug release and capability for adsorption with any negatively charged biomolecules.
Graphical abstract MNP coated with multi-functional PDEAEMA-b-P(NIPAAm-st-TlaAm) copolymer and its proposed drug release
  相似文献   
1000.
In this work, ZnO nanorod/Cu2O composite nanostructure solar cells were prepared using hydrothermal growth and electrodeposition. The CdS layer was added between ZnO and Cu2O to suppress carrier reverse recombination. Nondestructive interface deposition methods were employed to prepare CdS and Cu2O functional layers. The CdS layers were unconventionally deposited in non-alkaline solution, which can inhibit etching on the ZnO surface, and Cu2O layers were electrodeposited in ZnO-buffered alkaline solution which can also inhibit etching on the ZnO surface. Finally, the performance of solar cells was improved by adding a highly resistive CdS intermediate layer between ZnO and Cu2O layers. This work demonstrated the nondestructive interface approach of chemical solution deposition of functional layers on ZnO and possibilities for further improvements to the performance of Cu2O-based nanostructure solar cells with the addition of an intermediated layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号