首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   7篇
化学   384篇
晶体学   1篇
力学   3篇
数学   49篇
物理学   82篇
  2020年   4篇
  2019年   8篇
  2017年   4篇
  2015年   7篇
  2014年   5篇
  2013年   16篇
  2012年   17篇
  2011年   18篇
  2010年   7篇
  2009年   6篇
  2008年   24篇
  2007年   21篇
  2006年   27篇
  2005年   19篇
  2004年   19篇
  2003年   14篇
  2002年   15篇
  2001年   17篇
  2000年   13篇
  1999年   13篇
  1998年   8篇
  1997年   3篇
  1996年   13篇
  1995年   11篇
  1994年   15篇
  1993年   21篇
  1992年   8篇
  1991年   17篇
  1990年   5篇
  1988年   8篇
  1987年   8篇
  1986年   4篇
  1985年   5篇
  1984年   9篇
  1983年   7篇
  1982年   12篇
  1981年   10篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1977年   3篇
  1974年   10篇
  1973年   5篇
  1962年   4篇
  1918年   2篇
  1916年   2篇
  1915年   2篇
  1913年   2篇
  1911年   2篇
  1905年   2篇
排序方式: 共有519条查询结果,搜索用时 0 毫秒
511.
Photophysical data and orbital energy levels (from electrochemistry) were compared for molecules with the same BODIPY acceptor part (red) and perpendicularly oriented xanthene or BODIPY donor fragments (green). Transfer of energy, hence the photophysical properties of the cassettes, including the pH dependent fluorescence in the xanthene-containing molecules, correlates with the relative energies of the frontier orbitals in these systems. Intracellular sensing of protons is often achieved via sensors that switch off completely at certain pH values, but probes of this type are not easy to locate inside cells in their "off-state". A communication from these laboratories (J. Am. Chem. Soc., 2009, 131, 1642-3) described how the energy transfer cassette 1 could be used for intracellular imaging of pH. This probe is fluorescent whatever the pH, but its exact photophysical properties are governed by the protonation states of the xanthene donors. This work was undertaken to further investigate correlations between structure, photophysical properties, and pH for energy transfer cassettes. To achieve this, three other cassettes 2-4 were prepared: another one containing pH-sensitive xanthene donors (2) and two "control cassettes" that each have two BODIPY-based donors (3 and 4). Both the cassettes 1 and 2 with xanthene-based donors fluoresce red under slightly acidic conditions (pH < ~6) and green when the medium is more basic (>~7), whereas the corresponding cassettes with BODIPY donors give almost complete energy transfer regardless of pH. The cassettes that have BODIPY donors, by contrast, show no significant fluorescence from the donor parts, but the overall quantum yields of the cassettes when excited at the donor (observation of acceptor fluorescence) are high (ca. 0.6 and 0.9). Electrochemical measurements were performed to elucidate orbital energy level differences between the pH-fluorescence profiles of cassettes with xanthene donors, relative to the two with BODIPY donors. These studies confirm energy transfer in the cassettes is dramatically altered by analytes that perturb relative orbital levels. Energy transfer cassettes with distinct fluorescent donor and acceptor units provide a new, and potentially useful, approach to sensors for biomedical applications.  相似文献   
512.
Applied Biochemistry and Biotechnology - Ultrafine calcite particle production by coccolithophorid algae using a biosolar reactor system was carried out. Solar light was collected by Fresnel lenses...  相似文献   
513.
This paper considers the feasibility of replacing indium tin oxide (ITO) with spin-coated, polymer-based composite films that are filled with multiwalled carbon nanotubes (MWNTs). The coating mixture consists of a solvent with low volatility, a dissolved thermoplastic polymer, and MWNTs. The high aspect ratio of MWNTs and their good electrical conductivity enable electrical percolation at very low concentrations, so that films can be prepared that conduct electricity while retaining good optical transparency. Although the MWNTs are driven to aggregate by Van der Waals interactions, the high viscosity of the polymer/solvent solution enables the preparation of metastable, homogeneous dispersions. However, exposing the mixtures to shear leads to aggregation, the magnitude of which depends on the duration of the shear. This effect could be observed directly in spin-coated films using both optical microscopy and conductivity measurements, with aggregation causing a drop in conductivity at high nanotube loading, and more complex non-monotonic behavior at concentrations approaching the percolation threshold.  相似文献   
514.
This paper describes a method, discovered and refined by parallel screening, for the epoxidation of alkenes. It uses hydrogen peroxide as the terminal oxidant, is promoted by catalytic amounts (1.0-0.1 mol %) of manganese(2+) salts, and must be performed using at least catalytic amounts of bicarbonate buffer. Peroxymonocarbonate, HCO(4)(-), forms in the reaction, but without manganese, minimal epoxidation activity is observed in the solvents used for this research, that is, DMF and (t)BuOH. More than 30 d-block and f-block transition metal salts were screened for epoxidation activity under similar conditions, but the best catalyst found was MnSO(4). EPR studies show that Mn(2+) is initially consumed in the catalytic reaction but is regenerated toward the end of the process when presumably the hydrogen peroxide is spent. A variety of aryl-substituted, cyclic, and trialkyl-substituted alkenes were epoxidized under these conditions using 10 equiv of hydrogen peroxide, but monoalkyl-alkenes were not. To improve the substrate scope, and to increase the efficiency of hydrogen peroxide consumption, 68 diverse compounds were screened to find additives that would enhance the rate of the epoxidation reaction relative to a competing disproportionation of hydrogen peroxide. Successful additives were 6 mol % sodium acetate in the (t)BuOH system and 4 mol % salicylic acid in the DMF system. These additives enhanced the rate of the desired epoxidation reaction by 2-3 times. Reactions performed in the presence of these additives require less hydrogen peroxide and shorter reaction times, and they enhance the yields obtained from less reactive alkene substrates. Possible mechanisms for the reaction are discussed.  相似文献   
515.
516.
517.
A library of guanidine-based compounds was produced to mimic the lead compound 1, which is a substance known to have intensely sweet-taste characteristics. Libraries of guanidinocarboxylic acids were therefore prepared via two synthetic methods. The solid-phase method involving trapping of solution-phase carbodiimides by supported amines was used to produce N,N'-dialkyl derivatives (Scheme 1). The second solid-phase method, featuring supported carbodiimides and solution-phase amines (Scheme 2), was devised to prepare N,N'-disubstituted and N,N',N'-trisubstituted guanidinocarboxylic acids. A small collection of guanadinoacetic acid dimers and trimers was also prepared, but this time via a solution-phase coupling of carbodiimides to a polyamine linker.  相似文献   
518.
Conclusion and extensions We hope that this Review has made readers more aware of solvation of inorganic complexes, and of the importance of such knowledge in understanding their chemistryperhaps particularly their reactivity. The approach just set out for inorganic complexes should be of considerable value in the field or organometallic chemistry. In particular, informed use of solvation characteristics should help in optimising conditions for organometallic reactions and in homogeneous catalysis. Unfortunately, solvation data on reactants are too sparse (the subject index ofComprehensive Organometallic Chemistry contains justthree entries under solubility!) for serious examination of reactivity trends in terms of initial state and transition state contributions to be possible in almost all areas. Moreover, there are some fundamental problems over transfer parameters. Thus, a favourite electrochemical assumption is that the ferrocene/ferrocinium redox potential is independent of solvent. Yet, the dependence of rate constants on medium for outer-sphere electron transfer in the ferrocene/ferrocinium system can only be understood(66) in terms of specific solvation effects which are incompatible with the parallel solvation changes of these two substrates implicit in the redox potential assumption. The solvation of organometallic species should prove a most rewarding area for continued study, but it will be some time before the overall picture becomes as clear as in the more limited area of classical transition metal complexes considered in the present Review.  相似文献   
519.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号