首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   3篇
化学   96篇
力学   1篇
数学   20篇
物理学   35篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1975年   5篇
  1974年   1篇
  1973年   4篇
  1962年   1篇
  1942年   2篇
  1939年   3篇
  1937年   4篇
  1935年   2篇
  1932年   3篇
  1931年   3篇
排序方式: 共有152条查询结果,搜索用时 171 毫秒
81.
82.
The KTeV/E799 experiment at Fermilab has searched for the rare kaon decay K(L)-->pi(0)e(+)e(-). This mode is expected to have a significant CP violating component. The measurement of its branching ratio could support the standard model or could indicate the existence of new physics. This Letter reports new results from the 1999-2000 data set. One event is observed with an expected background at 0.99+/-0.35 events. We set a limit on the branching ratio of 3.5x10(-10) at the 90% confidence level. Combining with the previous result based on the data set taken in 1997 yields the final KTeV result: BR(K(L)-->pi(0)e(+)e(-))<2.8x10(-10) at 90% C.L.  相似文献   
83.
We report on a search for the decay K(L)-->pi(0)&mgr;(+)&mgr;(-) carried out as a part of the KTeV experiment at Fermilab. This decay is expected to have a significant CP violating contribution and a direct measurement will either support the Cabibbo-Kobayashi-Maskawa mechanism for CP violation or point to new physics. Two events were observed in the 1997 data with an expected background of 0.87+/-0.15 events, and we set an upper limit B(K(L)-->pi(0)&mgr;(+)&mgr;(-))<3. 8x10(-10) at the 90% confidence level.  相似文献   
84.
Despite the exceptional efficiency of perovskite solar cells (PSCs), further improvements can be made to bring their power conversion efficiencies (PCE) closer to the Shockley-Queisser limit, while the development of cost-effective strategies to produce high-performance devices are needed for them to reach their potential as a widespread energy source. In this context, there is a need to improve existing charge transport layers (CTLs) or introduce new CTLs. In this contribution, we introduced a new polyelectrolyte (lithium poly(styrene sulfonate (PSS))) (Li:PSS) polyelectrolyte as an HTL in inverted PSCs, where Li+ can act as a counter ion for the PSS backbone. The negative charge on the PSS backbone can stabilize the presence of p-type carriers and p-doping at the anode. Simple Li:PSS performed poorly due to poor surface coverage and voids existence in perovskite film as well as low conductivity. PEDOT:PSS was added to increase the conductivity to the simple Li:PSS solution before its use which also resulted in lower performance. Furthermore, a bilayer of PEDOT:PSS and Li:PSS was employed, which outperformed simple PEDOT:PSS due to high quality of perovskite film with large grain size also the large electron injection barrier (ϕe) impeded back diffusion of electrons towards anode. As a consequence, devices employing PEDOT:PSS / Li:PSS bilayers gave the highest PCE of 18.64%.  相似文献   
85.
Biologically-based recognition elements (e.g., antibodies, aptamers, enzymes, etc.) are used as the recognition element within a wide variety of assays and sensor systems. There are, however, compelling reasons for researchers to develop inexpensive, robust, and reusable alternatives for these expensive and unstable biorecognition elements. This review summarizes recent research efforts on the development of molecularly templated (sometimes called molecularly imprinted) organic and inorganic polymers as possible replacements for expensive/labile biorecognition elements. The review begins with a briefing on biosensing and the pertinent issues and limitations. The focus then swings toward molecularly templating within organic and inorganic (xerogels) polymers to create materials with analyte binding characteristics akin to a biorecognition element. The review then describes several recent developments wherein analyte recognition and an analyte-dependent transduction methodology are simultaneously incorporated directly within the templated materials. The review ends by outlining the current state-of-the-art and the remaining issues and impediments.  相似文献   
86.
We compare how (i) four ionic liquids (ILs) (1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][Tf2N]), 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C4mpy][Tf2N]), and trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([P(C6)3C14][Tf2N])) and (ii) two conventional molecular liquids (methanol and 1-octanol) solvate/wet luminescent organic moieties that are covalently attached to the surface of silica controlled pore glass (CPG). A series of aminopropyl CPG particles that have been covalently tagged with the solvatochromic fluorescent probe group dansyl were used in this study. The results demonstrate that ILs solvate/wet the silica surface differently in comparison to molecular liquids (MLs). Specifically, when comparing ILs and MLs that appear to solvate the free probe, dansylpropylsulfonamide (DPSA), equally in solution, we find that ILs do not solvate/wet the silica surfaces as well as the corresponding MLs. The cation component in these ILs is the significant factor in how the ILs solvate/wet silica surfaces. Solvation/wetting of surface-bound species at a silica surface depends on the cation size. Chlorosilane end-capping of the surface silanol and amine residues attenuates the cation's affects.  相似文献   
87.
Controlling optical aberrations is one of the enduring problems in optics. Recent advances in adaptive optics for astronomical applications have shown the promise of adaptive optics technology for controlling aberrations. Micro-electro-mechanical deformable mirrors (MEM-DMs) offer an alternative to conventional adaptive optics which, due to the inexpensive nature of MEM-DM technology, will enable a wide range of commercial and scientific applications for optical wave front control. In this paper we describe MEM-DMs, present results of modelling the performance of an MEM-DM for optical aberration control, and present results of experiments to verify that MEM-DMs can control optical aberrations.  相似文献   
88.
We introduce an averaging framework, where the solution of a time-varying equation with a small amplitude is approximated by the solution of a slowly-varying auxiliary system, generated by convolving the original equation with a kernel function. The effect of the convolution is smoothing of the equation, thus, making it more amenable to numerical computations. We present tight results on the approximation error for general classes of vector fields and kernels.  相似文献   
89.
Although the fabrication procedures for bulk heterojunction (BHJ) solar cells are routinely optimized to accommodate new organic materials, the influence of solvent properties and cohesive forces on the film‐forming process and the self‐assembly of donor and acceptor molecules on the nanoscale are poorly understood. In this study, we measure the solubility of a variety of organic semiconductors in a range of solvents and calculate cohesive forces including dispersion forces, dipole interactions, and hydrogen bonding via Hansen Solubility Parameters (HSPs). HSPs were calculated by measuring the solubilities of various organic semiconductors in 27 solvents and the influence of solvent identity on film morphology of different BHJ mixtures was explored via atomic force microscopy (AFM). The possibility of correlations between HSPs and film morphology was considered; however, it is apparent that the HSP values alone do not play a critical role in determining the morphology of the films of conjugated polymers and molecules. This collection of solubility data constitutes the first of its type for organic semiconducting materials, and may act as a useful reference for the organic semiconductor community to aid in the understanding and selection of solvents for donor–acceptor BHJ mixtures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
90.
Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号