首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   8篇
  国内免费   5篇
化学   282篇
晶体学   5篇
力学   12篇
数学   59篇
物理学   129篇
  2023年   4篇
  2020年   6篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   7篇
  2013年   25篇
  2012年   11篇
  2011年   22篇
  2010年   22篇
  2009年   13篇
  2008年   17篇
  2007年   30篇
  2006年   11篇
  2005年   17篇
  2004年   8篇
  2003年   8篇
  2002年   11篇
  2001年   18篇
  2000年   10篇
  1999年   8篇
  1998年   11篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   10篇
  1993年   12篇
  1992年   13篇
  1991年   6篇
  1990年   17篇
  1989年   7篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   14篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   9篇
  1980年   9篇
  1979年   5篇
  1978年   5篇
  1976年   5篇
  1975年   6篇
  1974年   4篇
  1969年   3篇
  1895年   2篇
  1874年   2篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
481.
A reaction between 2, 8-dichloro-4, 10-dinitro-5, 11-dehydro-5H, 11H-benzotriazolo[2, 1-a]-benzotriazole 8 and sodium azide in dimethyl sulfoxide produced 3, 9-diazido-4, 10-dinitro-5, 11-dehydro-5H, 11H-benzotriazolo [2, 1-a]benzotriazole 10 rather than the 2.8-diazido isomer 9 expected by direct displacement. Thermolytic elimination of nitrogen (2 moles) converted the dinitro diazide 10 to 3,4,9,10-bisfuroxano-5, 11-dehydro-5H, 11H-benzotriazolo[2, 1-a]benzotriazole 11 that was subsequently nitrated to give the 2,8-dinitro derivative 12 . Similar nitration converted the dinitro diazide 9 to the trinitro 15 and tetranitro 14 derivatives: thermolysis of the latter gave 1,2,7,8-bisfuroxano-4, 10-dinitro-5, 11-dehydro-5H, 11H-benzotriazolo[2, 1-a]-benzotriazole 16 . Nitration (100% HNO3, CF3SO3H) converted compound 16 to the 3,4,10-trinitro derivative 17 , whereas a similar nitration (100% HNO3, FSO3H) gave the title compound BTBB, an insensitive high-energy, high-density (d 2.03 g/cc) molecule. © 1995 John Wiley & Sons, Inc.  相似文献   
482.
The 4,6-dinitroso derivative 11 was obtained (83%) by the nitrosation of 2-oxooctahydroimidazo[4,5-d]-imidazole 1 as the dihydrochloride and was converted to the 4,6-dinitro derivative 12 [66%] by treatment with nitric acid (100%, -40°C) and to the 1,4,6-trinitro derivative 13 (66%) and the 1,3,4,6-tetranitro derivative 2 (86%) by treatment with nitric acid (100%) in acetic anhydride at 0–5°C and 10–25°C respectively. Similar treatment with nitric acid (100%) in either acetic or trifluoroacetic anhydride at 0–25°C converted the trinitro compound 13 to the tetranitro compound 2 (86%). The dinitramine 12 was also obtained (43%) from the diamine 1 by nitration with nitric acid (100%, -40°C). A reaction between 2-nitrimino-5-iminooctahydroimidazo[4,5-d]imidazole 7 as a hydrochloride salt (from an acid catalyzed condensation between 4,5-dihydroxy-2-nitriminoimidazolidine 6 and guanidine) and nitric acid (100%, -40°C) gave the 2,5-dinitrimino derivative 14 (85%) isolated as a monohydrate. The nitrate salt 7 · HNO3, isomeric with 14 · H2O, was obtained from the corresponding hydrochloride 7 · HCl and silver nitrate. Both nitrimines 7 and 14 gave 1,3,4,6-tetranitro-2,5-dioxooctahydroimidazo[4,5-d]imidazole 15 (66% and 59%) by treatment with nitric acid (100%) in acetic anhydride.  相似文献   
483.
Condensations between 3-X-2,4-dimethylpyrroles (X = H, CH3, C2H5, and CO2C2H5) and acyl chlorides gave derivatives of 3,5,3′,5′-tetramethylpyrromethene (isolated as their hydrochloride salts): 6-methyl, 6-ethyl, 4,4′,6-trimethyl, 4,4′-diethyl-6-methyl, and 4,4′-dicarboethoxy-6-ethyl derivatives for conversion on treatment with boron trifluoride to 1,3,5,7-tetramethylpyrromethene–BF2 complex (TMP–BF2) and its 8-methyl (PMP–BF2), 8-ethyl, 2,6,8-trimethyl (HMP–BF2),2,6,-diethyl-8-methyl (PMDEP–BF2), and 2,6-dicarboethoxy-8-ethyl derivatives. Chlorosulfonation converted, 1,3,5,7,8-pentamethylpyrromethene–BF2 complex to its 2,6-disulfonic acid isolated as the lithium, sodium (PMPDS–BF2), potassium, rubidium, cesium, ammonium, and tetramethylammonium disulfonate salts and the methyl disulfonate ester. Sodium 1,3,5,7-tetramethyl-8-ethylpyrromethene-2,6-disulfonate–BF2 complex was obtained from the 8-ethyl derivative of TMP–BF2. Nitration and bromination converted PMP–BF2 to its 2,6-dinitro-(PMDNP–BF2) and 2,6-dibromo- derivatives. The time required for loss of fluorescence by irradiation from a sunlamp showed the following order for P–BF2 compounds (10−3 to 10−4 M) in ethanol: PMPDS–BF2, 7 weeks; PMP–BF2, 5 days; PMDNP–BF2, 72 h; HMP–BF2, 70 h; and PMDEP–BF2, 65 h. Under similar irradiation PMPDS–BF2 in water lost fluorescence after 55 h. The dibromo derivative was inactive, but each of the other pyrromethene–BF2 complexes under flashlamp excitation showed broadband laser activity in the region λ 530–580 nm. In methanol PMPDS–BF2 was six times more resistant to degradation by flashlamp pulses than was observed for Rhodamine-6G (R-6G). An improvement (up to 66%) in the laser power efficiency of PMPDS–BF2 (10−4 M in methanol) in the presence of caffeine (a filter for light <300 nm) was dependent on flashlamp pulse width (2.0 to 7.0 μsec).  相似文献   
484.
Guanidine condensed with 1,4-diformyl-2,3,5,6-tetrahydroxypiperazine 1 to give 2,6-diiminodecahydro-1H,5H-diimidazo[4,5-b:4′,5′-e]pyrazine 3 isolated as the tetrahydrochloride salt. nitric acid (100%) at −40°C converted the bisguanidine 3 to 2,6-dinitrimino-4,8-dinitrodecahydro-1H,5H-diimidazo[4,5-b:4′,5′-e]- pyrazine 8 isolated as a dihydrate, whereas nitration by nitronium tetrafluoroborate at 0° to 25°C afforded 2,6-diimino-4,8-dinitrodecahydro-1H,5H-diimidazo[4,5-b:4′,5′-e]pyrazine 9 isolate as the monohydrated bistetrafluoroborate salt, and treatmetn with nitric acid (100%) and acetic anhydride or phosphorus pentoxide converted the bisguanidine 3 to 2,6-dioxo-1,3,4,5,7,8-hexanitrodecahydro-1H,5H-diimidazo[4,5-b:4′,5′-e]pyrazine 4 , also obtained from the tetra N-nitro compound 8 · 2 H2O and from the dinitramine 9 · 2 BHF4 · H2O after similar treatment. The cis-syn-cis- configuration of the tricyclic bisurea 4 and bisguanidine 9 was confirmed by X-ray crys-tallographic analysis. Nitrosation by nitrous acid or by dinitrogen tetroxide converted the bisguanidine 3 to a hydrated 2,6-dinitrosimino-4,8-dinitrosodecahydro-1H,5H-diimidazo[4,5-b:4′,5′-]pyrazine 10 · 2.5 H2O, whereas treatment with nitrosonium tetrafluo-roborate afforded the bistetrafluoroborate salt of 4,8-dinitroso derivative 11 · 2 BHF 4 . The nitrosamines 10 and 11 were converted to the tetranitro compound 8 · 2 H2O on treatment with nitric acid (100%) at −40°C. Treatmnt with fluoroboric acid etherate in acetonitrile converted nitroimino groups in compound 8 · 2 H2O and nitrosimino groups in compound 10 · 2.5 H2O to imino groups in compounds 9 · 2 BHF2 · H2O and 11 · 2 HBF4 respectively.  相似文献   
485.
Treatment with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) oxidized 2,6-diethyl-1,3,5,7,8-pentamethylpyrromethene–BF2 complex 1 , 13,14-trimethyl-2, 3, 4, 5,9,10,11,12-octahydroindomethene–BF2 complex 5 , and 1,3,5,7,8-pentamethyl-1,2,3,5,6,7-hexahydropyromethene–BF2 complex 8 to the weakly fluorescent 3-formyl, 5-oxo, and 8-formyl derivatives 4 , 6 , and 9 , respectively. The dye 1 was oxidized by lead tetraacetate to 1,7,8-trimethyl-2,6-diethyl-3,5-diacetoxymethylpyrromethene–BF2 complex 12f (ethanol) 538 nm, Φ 0.62, λlas (ethanol) 555–570 nm]. Catalytic reduction (Pd/C) converted the aldehyde 4 to 2,6-diethyl-3-hydroxymethyl-1,5,7,8-tetramethylpyrromethene–BF2 complex 10f (ethanol) 537 nm, Φ 0.70, λlas (ethanol) 547–575 nm].  相似文献   
486.
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.  相似文献   
487.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号