首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   3篇
化学   68篇
晶体学   1篇
力学   24篇
数学   11篇
物理学   46篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   9篇
  2011年   5篇
  2010年   9篇
  2009年   2篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   9篇
  1999年   6篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1971年   4篇
  1970年   1篇
  1961年   1篇
排序方式: 共有150条查询结果,搜索用时 125 毫秒
141.
This paper assesses the sensitivity of cyclic plasticity to microstructure morphology by examining and comparing the microplastic ratcheting behavior of different idealized microstructures (square, hexagonal, tessellated, and digitized from experimental data). This analysis demonstrates the sensitivity of computational accuracy to the various approximations in microstructural representation. The methodology used to perform this study relies on a coupling between microstructural characterization, mechanical testing and numerical simulations to investigate the influence of the microstructure on the purely tensile uniaxial microplastic ratcheting behavior of pure nickel polycrystals. The morphology and deformation behavior of polycrystals were characterized using electron back-scatter diffraction (EBSD), while a finite element model (FEM) of crystal plasticity was used in a computational framework. The predicted cyclic behavior is compared to experimental results both at the macroscopic and microstructural scales. The stress–strain response is less sensitive to the details of the microstructural representation than might be expected with all representations displaying similar macroscopic constitutive response. However, the details of the plastic strain distribution at the microstructural scale and the related estimations of damage mechanics vary substantially from one microstructural representation to another.  相似文献   
142.
L.A. Shepp has posed and analyzed the problem of optimal random drawing without replacement from an urn containing predetermined numbers of plus and minus balls. Here Shepp's results are extended by improving the bounds on values of perturbed urns, deriving an exact algorithm for the urn values and computing the stopping boundary for urns of up to 200 balls.  相似文献   
143.
We have developed a chemical separation technique that allows the radiochemical determination of the californium -decay content in Department of Energy (DOE) high level wastes from the Hanford and Savannah River sites. The chemical separation technique uses a series of column extraction chromatography steps that use Eichrom Industries' lanthanide and actinide +3 oxidation state selective Ln-resin® and the transuranic selective +4 oxidation state TRU-resin® to obtain intermediate product phases in dilute nitric acid. The technique has been demonstrated on three types of authentic DOE high and low level waste samples. We obtain discrimination from Pu -activity by a factor of over 200 and from 244Cm -activity by a factor approaching 1700. Californium recoveries are measured by addition of a 249Cf spike and are in the range of 50% to 90% in the synthetic samples and are in the range of 1.4% to 48% for the authentic DOE waste samples.  相似文献   
144.
A nonlinear structural mechanics based approach for modeling the structure and the deformation of single-wall and multiwall carbon nanotubes (CNTs) is presented. Individual tubes are modeled using shell finite elements, where a specific pairing of elastic properties and mechanical thickness of the tube wall is identified to enable successful modeling with shell theory. The effects of van der Waals forces are simulated with special interaction elements. This new CNT modeling approach is verified by comparison with molecular dynamics simulations and high-resolution micrographs available in the literature. The mechanics of wrinkling of multiwall CNTs are studied, demonstrating the role of the multiwalled shell structure and interwall van der Waals interactions in governing buckling and postbuckling behavior.  相似文献   
145.
146.
Nuclear magnetic resonance has been successfully applied to the study of the microstructure of hydrogenated amorphous silicon and related materials. It has been used to determine the local bonding and structural environment of the host atoms, the hydrogen, and the dopants. First, we review some of these NMR experimental results on the hydrogen microstructure in hydrogentaed amorphous semiconductors and compare the results on plasma deposited hydrogenated amorphous silicon (a-Si:H), remote hydrogen plasma deposited a-Si:H, thermally annealed a-Si:H, doped a-Si:H, microcrystalline Si and amorphous (Si, Ge):H alloys. A common feature is that these materials exhibit a heterogeneous distribution of hydrogen bonded to the semiconductor lattice in dilute and clustered phases. In addition, the lattice contains voids of varying number and size that contain non-bonded molecular hydrogen whose quantity is altered by deposition conditions and thermal treatment. Second, we review some aspects of the local bonding structure of dopants in a-Si:H. A significant fraction of the dopants are found to be in dopant-hydrogen clusters similar to those proposed to explain hydrogen passivation in crystalline silicon. Implications of the determined local structure on the doping efficiency are discussed.  相似文献   
147.
Measurements of the extended X-ray absorption fine structure (EXAFS) on the Ag K-shell absorption in RbAg4I5 show that in all three crystalline phases the equilibrium position of the Ag ions is near the center of tetrahedra formed by the iodine atoms. In addition, Ag-Ag correlations, which persist into the superionic α-phase, are observed.  相似文献   
148.
A range of compounds were evaluated as probes for the indirect detection of inorganic ions using CE and light-emitting diodes (LEDs) as the light source. Emphasis was placed on examining probes likely to absorb strongly in the UV-Vis region near 350-430 nm as compounds, which absorb at longer wavelengths tend to be bulkier and adsorb onto the capillary wall. These probes should act as a replacement for the very effective but carcinogenic probe chromate. Two probes were identified and evaluated: p-nitrophenol and 4-hydroxy-3,5-dinitrobenzoic acid. The former showed the most potential with low-mobility anions, while the later had a moderate electrophoretic mobility and was more suitable for a wider mobility range of analytes. However, neither could match the efficiencies and LOD of chromate for the separation of the fast inorganic ions such as chloride, nitrate and sulphate. Nevertheless, application of the 4-hydroxy-3,5-dinitrobenzoic acid system to the determination of oxalate in Bayer liquors showed excellent sensitivity and selectivity.  相似文献   
149.
Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kβ X-ray emission spectra showed Kβ' and Kβ(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center.  相似文献   
150.
The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号