首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   10篇
  国内免费   2篇
化学   196篇
晶体学   3篇
力学   4篇
数学   23篇
物理学   74篇
  2023年   7篇
  2022年   5篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   5篇
  2017年   4篇
  2016年   11篇
  2015年   8篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   23篇
  2010年   11篇
  2009年   9篇
  2008年   9篇
  2007年   7篇
  2006年   14篇
  2005年   7篇
  2004年   9篇
  2003年   11篇
  2002年   16篇
  2001年   5篇
  2000年   9篇
  1999年   11篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1969年   1篇
  1968年   3篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
201.
Traditionally, in moment-method analyses of electromagnetic scattering, the elements of the impedance matrix are calculated as convolutions of the basis elements with the appropriate dyadic Green's function. However, for scattering in the half-space, the vertical and azimuthal copolar terms of the Green's function require evaluation of Sommerfeld integrals which are computationally burdensome. In this paper, it is shown that, in populating the impedance matrix for the half-space problem, evaluation of Sommerfeld integrals is, in fact, not necessary. For monochromatic excitation, the plane-wave expansion of the scattered field constitutes a Fourier transform, in the horizontal plane, of a vector spectral function. This vector function results from the convolution, in the vertical dimension, of the respective angular spectra of the Green's function and the equivalent current. On application of the moment method, through the Weyl identity, the impedance-matrix elements corresponding to the singular terms of the Green's function are convolutions in the horizontal plane of spherical potentials, and Fourier transforms of scalar spectral functions. These scalar functions are derived from the basis elements and, with a judicious choice of basis, they are well behaved and of compact support, and consequently their Fourier transforms can be computed as FFTs.  相似文献   
202.
203.
The spherulitic growth rate of isotactic polystyrene has been measured in a wide range of temperature by means of a polarizing microscope provided with a hot stage. It was possible to fit the experimental data to theory by choosing a value of 75 for the constant C2 of the WLF equation. The growth rate parameters were compared with those of polyethylene and polychlorotrifluoroethylene. The slowness of crystallization of isotactic polystyrene is mainly a consequence of the lower mobility of the molecules caused by the bulky phenyl groups.  相似文献   
204.
The use of two nanoparticulate palladium based catalysts in the Suzuki reaction is described. One monometallic (Pd) and one bimetallic (Pd/Au) catalyst were prepared by the environmentally benign method of bioreductive precipitation by Shewanella oneidensis. Both catalysts successfully mediated the Suzuki coupling, however, the Au doped catalyst was shown to deliver more reproducible results with a broader reaction scope.  相似文献   
205.
206.
207.
Amino or polyamino derivatives of naphthalene (N-H), anthracene (A-H) and 8-alkoxypsoralen (PSR-H) were prepared along with their monobrominatcd analogs (N-Br, A-Br and PSR-Br). The ammonium salts of these compounds are all water soluble and bind strongly to calf thymus DNA and to λ phage, a double-helical DNA, protein-coated virus. Binding of the sensitizer to DNA occurs, presumably by a mixture of hydrophobic, intercalative and electrostatic interactions. Relative binding constants to calf thymus DNA and to λ phage were measured by the cthidium bromide fluorescence quenching assay. In general the brominated analogs bind more tightly to calf thymus DNA and to the virus than to the nonhalogenated analogs. It is demonstrated that the brominated aromatics are much more effective at inactivating λ phage upon photoactivation (λ 310 or 350 nm) than are their nonbrominated analogs. At identical sensitizer concentrations (by weight) and light flux N-Br, A-Br, and PSR-Br produce 5–6 more logs of viral inactivation than their nonbrominated counterparts (N-H, A-H and PSR-H, respectively). The bromine effect may originate from light-induced electron transfer and subsequent cleavage of the C-Br bond of the sensitizer radical anion bonds to form aryl radicals. Singlet oxygen cannot be responsible for the viral inactivation because the brominated sensitizers are equally effective in the presence and absence of oxygen. Dithiothreitol does not protect λ phage from light-induced inactivation by the brominated sensitizer thereby demonstrating that the photogenerated reactive intermediates responsible for the effect are complcxed to the virus and are not generated free in solution.  相似文献   
208.
Sulfonamide and amide derivatives of tris(aminoethyl)amine (TREN) are known to facilitate phospholipid translocation across vesicle and erythrocyte membranes; that is, they act as synthetic translocases. In this report, a number of new TREN-based translocases are evaluated for their abilities to bind phosphatidylcholine and translocate a fluorescent phosphatidylcholine probe. Association constants were determined from (1)H NMR titration experiments, and translocation half-lives were determined via 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)/dithionite quenching assays. A rough correlation exists between translocase/phosphatidylcholine association constants and translocation half-lives. The tris-sulfonamide translocases are superior to the tris-amide versions because they associate more strongly with the phospholipid headgroup. The stronger association is due to the increased acidity of the sulfonamide NHs as well as a molecular geometry (as shown by X-ray crystallography) that is able to form tridentate complexes with one of the phosphate oxygens. Two fluorescent translocase analogues were synthesized and used to characterize membrane partitioning properties. The results indicate that the facilitated translocation of phospholipids by TREN-derived translocases is due to the formation of hydrogen-bonded complexes with the phospholipid headgroups. In the case of zwitterionic phosphatidylcholine, it is the neutral form of the translocases that rapidly associates with the phosphate portion of the phosphocholine headgroup. Complexation masks the headgroup polarity and promotes diffusion of the phospholipid-translocase complex across the lipophilic interior of the membrane.  相似文献   
209.
The gelation of mixed cationic/anionic surfactant vesicles of sodium dodecyl sulfate/didodecyldimethylammonium bromide and sodium dodecylbenzenesulfonate/cetyltrimethylammonium tosylate by hydrophobically modified sodium polyacrylate is studied rheologically. When the vesicles are cationically charged, mixtures with this anionic polyelectrolyte form precipitates. When the vesicles are anionically charged, however, these mixtures display a progression from a Maxwell fluid to a critical gel to a solidlike gel with increasing vesicle and/or polyelectrolyte concentration. Consideration of the viscous behavior with increasing vesicle and polymer volume fraction indicates that the gel network is formed by the bridging of the hydrophobically modified polymer between vesicles. The similarity between the gelation results for the two anionic systems suggests the results can be generalized to other similarly charged mixtures.  相似文献   
210.
MH Rashid  RK Bhandari 《Pramana》2002,59(5):781-794
The conventional type of magnetic well is formed by superposition of two types of magnetic field, axial bumpy field and radial multipole field. It is used to contain plasma that consists of neutrals, ions and electrons. These particles are in constant motion in the well and energetic electrons create plasma by violent collisions with neutrals and ions. The confined electrons are constantly heated by ECR technique in the presence of magnetic field. In this paper it has been shown theoretically that how the electron motion is influenced in terms of heating, containment and azimuthal uniformity of plasma, by the axial rotation of the multipole magnetic field [1,2]. Afterwards, the feasibility of achieving a rotating magnetic multipole field is discussed to some extent. And it is seen that it is not beyond the capability of the scientific community in the present scenario of the advanced technology. Presently, it can be achieved for lesser field and slightly larger size of the multipole electromagnet and can be used for improvement of the ECR ion source (ECRIS).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号