首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79570篇
  免费   341篇
  国内免费   379篇
化学   25044篇
晶体学   796篇
力学   6876篇
数学   32132篇
物理学   15442篇
  2022年   35篇
  2021年   43篇
  2019年   39篇
  2018年   10472篇
  2017年   10301篇
  2016年   6102篇
  2015年   874篇
  2014年   357篇
  2013年   425篇
  2012年   3848篇
  2011年   10579篇
  2010年   5683篇
  2009年   6099篇
  2008年   6662篇
  2007年   8803篇
  2006年   292篇
  2005年   1364篇
  2004年   1572篇
  2003年   2012篇
  2002年   1054篇
  2001年   271篇
  2000年   311篇
  1999年   179篇
  1998年   211篇
  1997年   164篇
  1996年   216篇
  1995年   133篇
  1994年   99篇
  1993年   108篇
  1992年   64篇
  1991年   83篇
  1990年   64篇
  1989年   81篇
  1988年   70篇
  1987年   73篇
  1986年   72篇
  1985年   70篇
  1984年   57篇
  1983年   45篇
  1982年   53篇
  1981年   49篇
  1980年   56篇
  1979年   55篇
  1978年   51篇
  1973年   39篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Change of α-helical structure of heme protein (Hb) to a β-sheet and random coil conformation because of the interaction of glycine capped gold nanoparticles (20–60 nm) as observed from attenuation total reflectance, absorption, Fourier transform infra red, and Circular Dichroism spectroscopy has been reported in this article. Upon interaction, protein takes a cylindrical shape of length 12 μm and diameter 0.35 μm as revealed from scanning electron microscopy and transmission electron microscopy. The Selected-Area Electron beam Diffraction pattern shows change of crystalline structure in GNP to amorphous nature with the interaction of Hb.  相似文献   
992.
In this paper, we synthesize VLS-grown rough Si nanowires using Mn as a catalyst with various surface roughnesses and diameters and measured their thermal conductivities. We grew the nanowires by a combination vapor-liquid-solid and vapor-solid mechanism for longitudinal and radial growth, respectively. The surface roughness was controlled from smooth up to about 37 nm by the radial growth. Our measurements showed that the thermal conductivity of rough surface Si nanowires is significantly lower than that of smooth surface nanowires and decreased with increasing surface roughness even though the diameter of the smooth nanowire was lower than that of the rough nanowires. Considering both nanowires were grown via the same growth mechanism, these outcomes clearly demonstrate that the rough surface induces phonon scattering and reduces thermal conductivity with this nanoscale-hole-free nanowires. Control of roughness induced phonon scattering in Si nanowires holds promise for novel thermoelectric devices with high figures of merit.  相似文献   
993.
Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report the immobilization of a PhEst, a S-formylglutathione hydrolase from the psychrophilic P. haloplanktis TAC125 onto the gold coated surface of modified superparamagnetic core-shell nanoparticles (Fe3O4@Au). The synthesis of the nanoparticles is also reported. S-formylglutathione hydrolases constitute a family of ubiquitous enzymes which play a key role in formaldehyde detoxification both in prokaryotes and eukaryotes. PhEst was originally annotated as a putative feruloyl esterase, an enzyme that releases ferulic acid (an antioxidant reactive towards free radicals such as reactive oxygen species) from polysaccharides esters. Dynamic light scattering, scanning electron microscopy with energy dispersive X-ray spectroscopy, UV–visible absorption spectroscopy, fluorescence spectroscopy, magnetic separation technique and enzyme catalytic assay confirmed the chemical composition of the gold covered superparamagnetic nanoparticles, the binding and activity of the enzyme onto the nanoparticles. Activity data in U/ml confirmed that the immobilized enzyme is approximately 2 times more active than the free enzyme in solution. Such particles can be directed with external magnetic fields for bio-separation and focused towards a medical target for therapeutical as well as bio-sensor applications.  相似文献   
994.
This paper starts with a self-contained discussion of the so-called Akulov–Volkov action SAV\mathcal{S}_{\mathrm{AV}}, which is traditionally taken to be the leading-order action of the Goldstino field. Explicit expressions for SAV\mathcal{S}_{\mathrm{AV}} and its chiral version SAVch\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} are presented. We then turn to the issue on how these actions are related to the leading-order action SNL\mathcal{S}_{\mathrm{NL}} proposed in the newly proposed constrained superfield formalism. We show that SNL\mathcal{S}_{\mathrm{NL}} may yield SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} or a totally different action SKS\mathcal{S}_{\mathrm{KS}}, depending on how the auxiliary field in the former is integrated out. However, SKS\mathcal{S}_{\mathrm{KS}} and SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} always yield the same S-matrix elements, as one would have expected from general considerations in quantum field theory.  相似文献   
995.
Over the last decade social scientific researchers have examined how the public perceives risks associated with nanotechnology. The body of literature that has emerged has been methodologically diverse. The findings have confirmed that some publics perceive nanotechnology as riskier than others, experts feel nanotechnology is less risky than the public does, and despite risks the public is optimistic about nanotechnology development. However, the extant literature on nanotechnology and risk suffers from sometimes widely divergent findings and has failed to provide a detailed picture of how the public actually feels about nanotechnology risks when compared to other risks. This study addresses the deficiencies in the literature by providing a comparative approach to gauging nanotechnology risks. The findings show that the public does not fear nanotechnology compared to other risks. Out of 24 risks presented to the participants, nanotechnology ranked 19th in terms of overall risk and 20th in terms of “high risk.”  相似文献   
996.
Recent experiments report that the radiative heat conductance through a narrow vacuum gap between two flat surfaces increases as the inverse square of the width of the gap. Such a significant increase of thermal conductivity has attracted much interest because of numerous promising applications in nanoscale heat transfer and because of the lack of its theoretical explanation. It is shown here that the radiative heat transport across narrow layers can be described in terms of conventional theory adjusted to non-equilibrium structures with a steady heat flux.  相似文献   
997.
The 3D profile surface parameter H q and fractal dimension D were tested as indicators of mechanical properties inferred from fracture surfaces of porous solids. High porous hydrated cement pastes were used as prototypes of porous materials. Both the profile parameter H q and the fractal dimension D showed capability to assess compressive strength from the fracture surfaces of hydrated pastes. From a practical point of view the 3D profile parameter H q seems to be more convenient as an indicator of mechanical properties, as its values suffer much less from statistical scatter than those of fractal dimensions.  相似文献   
998.
Iron-Phthalocyanine molecules deposited on the Cu(119) vicinal surface form molecular chains along the vicinal surface steps, as deduced by the low-energy electron diffraction (LEED) reconstruction pattern. The work-function lowers at the FePc single-layer completion, due to the formation of an interface dipole. Further FePc deposition induces a different growth morphology, as suggested by the slope discontinuity in the work function variation. Upon depositing potassium onto the FePc thin-film prepared on Cu(119), the K-injected electrons fill up the Fe-d-associated and ligand-π-related orbitals, as observed by means of high-resolution ultraviolet photoelectron spectroscopy.  相似文献   
999.
A wet chemical deposition method for preparing transparent conductive thin films on the base of Al-doped ZnO (AZO) nanoparticles has been demonstrated. AZO nanoparticles with a size of 7 nm have been synthesised by a simple precipitation method in refluxed conditions in ethanol using zinc acetate and Al-isopropylate. The presence of Al in ZnO was revealed by the EDX elemental analysis (1.8 at.%) and UV–Vis spectroscopy (a blue shift due to Burstein–Moss effect). The obtained colloid solution with the AZO nanoparticles was used for preparing by spin-coating thin films on glass substrates. The film demonstrated excellent homogeneity and transparency (T > 90%) in the visible spectrum after heating at 400 °C. Its resistivity turned to be excessively high (ρ = 2.6 Ω cm) that we ascribe to a poor charge percolation due to a high film porosity revealed by SEM observations. To improve the percolation via reducing the porosity, a sol–gel solution was deposited “layer-by-layer” in alternation with layers derived from the AZO colloid followed by heating. As it was shown by optical spectroscopy measurements, the density of thus prepared film was increased more than twice leading to a significant decrease in resistivity to 1.3 × 10−2 Ω cm.  相似文献   
1000.
In this paper we investigate the relation between weak convergence of a sequence \(\left\{ \mu_{n}\right\} \) of probability measures on a Polish space S converging weakly to the probability measure μ and continuous, norm-bounded functions into a Banach space X. We show that, given a norm-bounded continuous function f:SX, it follows that \(\lim_{n\to\infty}\int_{S}f\, d\mu_{n}=\int_{S}f\, d\mu\)—the limit one has for bounded and continuous real (or complex)—valued functions on S. This result is then applied to the stability theory of Feynman’s operational calculus where it is shown that the theory can be significantly improved over previous results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号