In the presence of BF3*Et2O, alkynyltungsten complexes underwent [3 + 2] cycloaddition with tethered epoxides to give bicyclic -lactones efficiently. Only one diastereomeric product was formed despite the presence of three stereogenic centers. A mechanism is proposed that involves formation of a tungsten-vinylidenium species via an SN2 attack of the epoxide carbon by an alkynyltungsten group to give a tungsten-enol ether species via counterattack at the central tungsten-vinylidenium carbon by the OBF3- terminus. Most of the tungsten enol ether species were too unstable for isolation and underwent hydrolysis to give only cis-fused -bicyclic lactones. This cyclization works for both cis- and trans-epoxides and tolerates various functional groups. In the case of trans-phenyl epoxide, the reaction led to an addition product via a 6-endo attack of epoxide by the tungsten fragment. This method provides a simple enantiospecific synthesis of complex bicyclic lactones if a chiral epoxide is used in the cyclization. It is also applicable to the one-pot synthesis of bicyclic unsaturated gamma-lactones if a suitable alkynyltungsten functionality is used. 相似文献
Three kinds of nylon 10 14 crystals with different perfections were prepared under various crystallization conditions. The Brill transition behavior of these nylon 10 14 crystals was investigated by variable-temperature X-ray diffraction. It was found that the crystallization conditions influence the Brill transition temperature greatly. The Brill transition temperature of the lamellar crystals grown from dilute solution is so high that no Brill transition temperature can be observed before melting. However, for crystals postannealed at 125 °C, the Brill transition temperature is as low as 130 °C. The results show that the Brill transition behavior of nylons is strongly dependent on the crystallization conditions, for example, the perfections of the crystals. 相似文献
[structure: see text] We have previously described a system of 2-aminoquinoline- and 2-aminoquinazoline-based C-deoxynucleosides (TRIPsides) that are designed to be incorporated into oligomers that can specifically bind in the major groove via Hoogsteen base pairing to any sequence of native DNA. The four TRIPsides are termed antiGC, antiCG, antiTA, and antiAT with respect to the Watson-Crick base pair targets that they bind. The first three TRIPsides have been prepared, characterized, and shown to form stable and sequence-specific triplexes. In the present study, we describe the preparation of two molecules, 2-amino-4-(2'-deoxy-beta-D-ribofuranosyl)quinazoline (7) and 2-amino-6-fluoro-4-(2'-deoxy-beta-D-ribofuranosyl)quinoline (14), that can serve as the remaining antiAT TRIPside. The phosphoramidites of 7 and 14 were prepared, but only the latter was successfully incorporated into DNA oligomers. It is demonstrated using UV-visible melting experiments that 14 forms sequence-specific intramolecular triplets with A:T base pairs at physiological pH. 相似文献
The interaction of tetrandrine with human serum albumin (HSA) was studied by measuring fluorescence quenching spectra, synchronous fluorescence spectra and ultra-violet spectra. The fluorescence quenching spectra of HSA in the presence of tetrandrine showed that tetrandrine quenched the fluorescence of HSA. The quenching constants of tetrandrine on HSA were determined using the Stern-Volmer equation. Static quenching and non-radiation energy transfer were the two main reasons leading to the fluorescence quenching of HSA by tetrandrine. According to the F?rster theory of non-radiation energy transfer, the binding distances (r) and the binding constants (K(A)) were obtained. The thermodynamic parameters obtained in this study revealed that the interaction between tetrandrine and HSA was mainly driven by a hydrophobic force. The conformational changes of HSA were investigated by synchronous spectrum studies. 相似文献
Tetramethylsilane (TMS) can be included by -cyclodextrin (-CD), and sodium 2,2-dimethylsilapentane-5-sulphonate (DSS) can form inclusion complexes with - and -CD. The NMR chemical shifts are changed considerably as a result of the strong interaction between CD and the guest compound in the inclusion complexes. A downfield shift of as much as 0.63 ppm shift downfield has been observed for the protons of external TMS in CD aqueous solution. In view of this, the question arises of whether TMS and DSS can be used as internal references. DSS in D2O is suggested as an external reference for aqueous cyclodextrin solution in NMR measurements. 相似文献
We report a series of experiments and a theoretical model designed to systematically define and evaluate the relative importance of nanoparticle, oligonucleotide, and environmental variables that contribute to the observed sharp melting transitions associated with DNA-linked nanoparticle structures. These variables include the size of the nanoparticles, the surface density of the oligonucleotides on the nanoparticles, the dielectric constant of the surrounding medium, target concentration, and the position of the nanoparticles with respect to one another within the aggregate. The experimental data may be understood in terms of a thermodynamic model that attributes the sharp melting to a cooperative mechanism that results from two key factors: the presence of multiple DNA linkers between each pair of nanoparticles and a decrease in the melting temperature as DNA strands melt due to a concomitant reduction in local salt concentration. The cooperative melting effect, originating from short-range duplex-to-duplex interactions, is independent of DNA base sequences studied and should be universal for any type of nanostructured probe that is heavily functionalized with oligonucleotides. Understanding the fundamental origins of the melting properties of DNA-linked nanoparticle aggregates (or monolayers) is of paramount importance because these properties directly impact one's ability to formulate high sensitivity and selectivity DNA detection systems and construct materials from these novel nanoparticle materials. 相似文献
A concise, multi-gram scale method for producing the bioactive and enantiomerically pure epimers, (2S,4R)- and (2S,4S)-glutamic acids, in a single synthetic scheme is described. 相似文献
[chemical reaction: see text]. Direct addition of Grignard reagents to acid chlorides in the presence of bis[2-(N,N-dimethylamino)ethyl] ether proceeds selectively to provide aryl ketones in high yields. A possible tridentate interaction between Grignard reagents and bis[2-(N,N-dimethylamino)ethyl] ether moderates the reactivity of Grignard reagents, preventing the newly formed ketones from nucleophilic addition by Grignard reagents. 相似文献
Surface modification of fabrics is a powerful strategy that can endow fabrics with desired effects while keeping the intrinsic properties. Herein, an ordinary strategy, dipping-drying based layer-by-layer self-assembly (LbL) coating, is reported to functionalize fabrics’ surfaces. Firstly, the novel cation waterborne polyurethanes (QAHDPU) and anion waterborne polyurethanes (HDPU) are successfully designed and synthesized. By incorporating targeted molecule, hydantoin diol (HD) and quaternary ammonium salt with long alkyl chain (DOQA), the QAHDPU are antibacterial and hydrophobically functionalized. Taking advantage of strong adhesion, waterborne polyurethanes (WPUs) are physically bonded to surfaces of fabrics to generate durable antibacterial and hydrophobic fabrics. The QAHDPU with long alkyl chain combined with rough and porous fabric surface fabricates hydrophobic fabric surface, which can prevent bacteria from adhering to the fabrics. Furthermore, the coated fabrics present excellent antibacterial properties after chlorination, forming a second barrier against bacteria. The chlorinated coated fabrics, can inactivate 85.0–99.9% of Staphylococcus aureus and 85.0–97.7% of Escherichia coli with contact time of 60 min. The hydrophobic properties of coated fabrics are greatly improved with water contact angles of 122.0°–141.1°. In addition, the proposed method is applicable for a variety of fibers and expected to be used for industrial production.
Samples of poly[1-(3-sulfopropyl)-2-vinyl-pyridinium-betaine] (PSPV) have been synthesized to high conversion by free radical polymerization in aqueous solution of the zwitterionic monomer SPV with several concentrations of the crosslinker N,N′-methylene-bis-acrylamide (MBA). The densities of the resultant xerogels increased regularly with the content of MBA. Hydrogels obtained by swelling them in water and aqueous KSCN solution were examined by gravimetric and dimensional analysis. The water contents increased with decreasing content of MBA, the value of 92.7 wt% at the lowest MBA content being higher than that for other zwitterionic hydrogels. Enhanced swelling occurred in 1 M aq. KSCN at each MBA content, the total swelling being 98.1 wt% at the lowest crosslinker content. Swelling increased with increasing temperature. An approximate procedure to formulating swelling equilibrium in term of the volume fraction of water in hydrogel, in conjunction with the van’t Hoff equation, yields a small positive value for the enthalpy of swelling. This is compared with values derived similarly for other hydrogels. 相似文献