首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   75篇
  国内免费   5篇
化学   1025篇
晶体学   15篇
力学   29篇
数学   116篇
物理学   229篇
  2024年   5篇
  2023年   33篇
  2022年   40篇
  2021年   40篇
  2020年   60篇
  2019年   48篇
  2018年   46篇
  2017年   30篇
  2016年   71篇
  2015年   50篇
  2014年   57篇
  2013年   116篇
  2012年   102篇
  2011年   104篇
  2010年   74篇
  2009年   53篇
  2008年   71篇
  2007年   64篇
  2006年   66篇
  2005年   29篇
  2004年   29篇
  2003年   47篇
  2002年   32篇
  2001年   23篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   10篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   3篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   9篇
  1981年   3篇
  1980年   5篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1967年   1篇
  1954年   1篇
排序方式: 共有1414条查询结果,搜索用时 15 毫秒
181.
Structure, energetics, and vibrational frequency of the microhydrated carbonyl sulfide anion [OCS?? (H2O)n (n = 1–6)] have been explored by the systematic ab initio study to have a comprehensive understanding about the hydration‐induced stabilization phenomenon of OCS?. Water binds with the OCS? in single hydrogen‐bonded (SHB) or double hydrogen‐bonded (DHB) fashion with O? H S and O? H O contacts. Maximum five water molecules can stay in a cyclic water network of these hydrated clusters forming interwater hydrogen bonding (IHB) with each other and out of this, maximum of two water molecules can bind directly to the OCS? in (DHB) arrangement. The stabilization energy values of OCS?? (H2O)n depict that ion–water interaction is significant up to four water molecules and beyond that OCS? is stabilized by IHB between the water molecules. The CO stretching frequency of OCS? gets red shifted, whereas CS stretching frequency gets blue shifted on hydration. Charge analysis of hydrated clusters of OCS? indicates that negative charge moves toward oxygen from sulfur on hydration. © 2015 Wiley Periodicals, Inc.  相似文献   
182.
Cadmium(II) based 2D coordination polymer [Cd(L1)2(DMF)2] ( 1 ) (L1 = 4,5‐dicyano‐2‐methylimidazolate, DMF = N,N′‐dimethylformamide) and 2D cobalt(II)‐imidazolate framework [Co(L3)4] ( 2 ) (L3 = 4,5‐diamide‐2‐ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction measurement (PXRD) and single‐crystal X‐ray diffraction. Compound 1 has hexacoordinate CdII ions and forms a zigzag chain‐like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 °C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central CoII atom.  相似文献   
183.
184.
Structure‐based design (SBD) can be used for the design and/or optimization of new inhibitors for a biological target. Whereas de novo SBD is rarely used, most reports on SBD are dealing with the optimization of an initial hit. Dynamic combinatorial chemistry (DCC) has emerged as a powerful strategy to identify bioactive ligands given that it enables the target to direct the synthesis of its strongest binder. We have designed a library of potential inhibitors (acylhydrazones) generated from five aldehydes and five hydrazides and used DCC to identify the best binder(s). After addition of the aspartic protease endothiapepsin, we characterized the protein‐bound library member(s) by saturation‐transfer difference NMR spectroscopy. Cocrystallization experiments validated the predicted binding mode of the two most potent inhibitors, thus demonstrating that the combination of de novo SBD and DCC constitutes an efficient starting point for hit identification and optimization.  相似文献   
185.
A new efficient methodology has been developed for the synthesis of para-alkoxyphenols, an important group of anti-melanoma compounds, by heating alcoholic solutions of para-benzoquinones in the presence of amberlyst-15. The most notable feature here is the behaviour of the used primary or secondary alcohol as an effective reducing agent.  相似文献   
186.
O-Aryloxime ether analogues L1L3 were studied as ligands in palladium-catalyzed Suzuki–Miyaura cross-coupling reaction of aryl bromides and aryl boronic acids in water at room temperature. Reaction conditions for the cross-coupling were optimized using PdCl2 and Pd(OAc)2 under aerobic condition. From the three electronically diverse O-aryloxime ether ligands studied herein, the use of 1-phenyl-ethanone O-(4-chloro-phenyl)-oximeL2 exhibits the best catalytic system in the presence of K2CO3 as the base and TBAB as the promoter.  相似文献   
187.
An inexpensive one-pot green methodology has been developed for the synthesis of thiazolo[2,3-a]isoquinolin-4-ium derivatives by the reaction of different derivatives of isoquinoline and 2-bromoacetophenone/bromoacetonitrile with benzoyl isothiocyanate in aqueous micellar medium.  相似文献   
188.
189.
2-Arylazo-5,5,10,10,15,15,20,20-octamethylcalix[4]pyrroles (azo-OMCPs) have been synthesised by the reaction of calix[4]pyrrole with aryldiazonium chloride in 15–45% yields. The solution-state binding studies of the synthesised hosts were investigated by absorption spectroscopy and 1H NMR in DMSO and CDCl3, respectively. These receptors, appended with electron-donating and electron-withdrawing groups, displayed enhanced affinity and selectivity for fluoride anion. Well-defined colour change in the visible region of the spectrum was observed upon addition of fluoride ion in DMSO solution of azo-OMCPs. Detailed NMR studies in CDCl3 revealed that azo-OMCPs with nitro and chloro groups have higher binding affinity for fluoride ion.

  相似文献   
190.
The reactivity of tBuLi (pentane) toward the N‐neopentyl‐substituted π‐excess P=CH–N heterocycle 1 depends on the solvent (tetrahydrofuran, diethyl ether, hexane, and toluene) and reaction conditions. Trapping of the resulting organolithium compounds with CO2/ClSiMe3, ClSiMe3, or EtI led to various products indicating CH lithiation ( 1a , b ), normal addition of tBuLi at the P=C bond (E/Z ‐2a , b ), inverse addition of the primary addition product 2Li at the P=C bond of a second molecule 1 , affording 3‐tert‐butyl‐2,2’‐bis(1,3‐benzazaphospholines) 3 , or inverse addition of tBuLi ( 4b,c ). The formation of 3 demonstrates a novel route to asymmetric heterocyclic 1,2‐diphosphine ligands. The structure elucidation of the new compounds is based on their 31P and 13C NMR data with conclusive chemical shifts and P–C coupling constants, that of the isolated PH‐functionalized diphosphine 3 on crystal structure analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号