首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   65篇
  国内免费   5篇
化学   689篇
晶体学   7篇
力学   25篇
数学   151篇
物理学   126篇
  2023年   8篇
  2022年   3篇
  2021年   17篇
  2020年   34篇
  2019年   22篇
  2018年   20篇
  2017年   4篇
  2016年   29篇
  2015年   27篇
  2014年   41篇
  2013年   62篇
  2012年   59篇
  2011年   66篇
  2010年   39篇
  2009年   30篇
  2008年   63篇
  2007年   56篇
  2006年   48篇
  2005年   53篇
  2004年   35篇
  2003年   33篇
  2002年   22篇
  2001年   16篇
  2000年   12篇
  1999年   8篇
  1998年   12篇
  1997年   9篇
  1996年   20篇
  1995年   8篇
  1994年   3篇
  1993年   7篇
  1992年   12篇
  1991年   6篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   3篇
  1985年   8篇
  1984年   9篇
  1983年   9篇
  1982年   3篇
  1981年   6篇
  1980年   6篇
  1978年   6篇
  1977年   8篇
  1976年   5篇
  1973年   4篇
  1972年   3篇
  1970年   4篇
  1876年   2篇
排序方式: 共有998条查询结果,搜索用时 125 毫秒
21.
Genetically modified organisms (GMOs) entered the European food market in 1996. Current legislation demands the labeling of food products if they contain <1% GMO, as assessed for each ingredient of the product. To create confidence in the testing methods and to complement enforcement requirements, there is an urgent need for internationally validated methods, which could serve as reference methods. To date, several methods have been submitted to validation trials at an international level; approaches now exist that can be used in different circumstances and for different food matrixes. Moreover, the requirement for the formal validation of methods is clearly accepted; several national and international bodies are active in organizing studies. Further validation studies, especially on the quantitative polymerase chain reaction methods, need to be performed to cover the rising demand for new extraction methods and other background matrixes, as well as for novel GMO constructs.  相似文献   
22.
Metal–Organic Frameworks (MOFs) have the potential to change the landscape of molecular separations in chemical processes owing to their ability of selectively binding molecules. Their molecular sorting properties generally rely on the micro- and meso-pore structure, as well as on the presence of coordinatively unsaturated sites that interact with the different chemical species present in the feed. In this work, we show a first-of-its-kind tomographic imaging of the crystal morphology of a metal–organic framework by means of transmission X-ray microscopy (TXM), including a detailed data reconstruction and processing approach. Corroboration with Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) images shows the potential of this strategy for further (non-destructively) assessing the inner architecture of MOF crystals. By doing this, we have unraveled the presence of large voids in the internal structure of a MIL-47(V) crystal, which are typically thought of as rather homogeneous lattices. This challenges the established opinion that hydrothermal syntheses yield relatively defect-free material and sheds further light on the internal morphology of crystals.

TXM-tomography unraveled large macropore defects within a MIL-47(V) MOF crystal. These pores do not seem to be well connected and they show a preferential orientation.  相似文献   
23.
Neomycin is the most effective aminoglycoside (groove binder) in stabilizing a DNA triple helix. It stabilizes TAT, as well as mixed base DNA triplexes, better than known DNA minor groove binders (which usually destabilize the triplex) and polyamines. Neomycin selectively stabilizes the triplex (in the presence of salt), without any effect on the DNA duplex. (1) Triplex stabilization by neomycin is salt dependent (increased KCl and MgCl(2) concentrations decrease neomycin's effectiveness, at a fixed drug concentration). (2) Triplex stabilization by neomycin is pH dependent (increased pH decreases neomycin's effectiveness, at a fixed drug concentration). (3) CD binding studies indicate approximately 5-7 base triplets/drug apparent binding site, depending upon the structure/sequence of the triplex. (4) Neomycin shows nonintercalative groove binding to the DNA triplex, as evident from viscometric studies. (5) Neomycin shows a preference for stabilization of TAT triplets but can also accommodate CGC(+) triplets. (6) Isothermal titration calorimetry (ITC) studies reveal an association constant of approximately 2 x 10(5) M(-)(1) between neomycin and an intramolecular triplex and a higher K(a) for polydA.2polydT. (7) Binding/modeling studies show a marked preference for neomycin binding to the larger W-H groove. Ring I/II amino groups and ring IV amines are proposed to be involved in the recognition process. (8) The novel selectivity of neomycin is suggested to be a function of its charge and shape complementarity to the triplex W-H groove, making neomycin the first molecule that selectively recognizes a triplex groove over a duplex groove.  相似文献   
24.
Summary Forf ( C n() and 0 t x letJ n (f, t, x) = (–1)n f(–x)f (n)(t) +f(x)f (n) (–t). We prove that the only real-analytic functions satisfyingJ n (f, t, x) 0 for alln = 0, 1, 2, are the exponential functionsf(x) = c e x,c, . Further we present a nontrivial class of real-analytic functions satisfying the inequalitiesJ 0 (f, x, x) 0 and 0 x (x – t)n – 1Jn(f, t, x)dt 0 (n 1).  相似文献   
25.
The mechanism and kinetics of the solvolysis of complexes of the type [(L-L)Pd(C(O)CH(3))(S)](+)[CF(3)SO(3)](-) (L-L = diphosphine ligand, S = solvent, CO, or donor atom in the ligand backbone) was studied by NMR and UV-vis spectroscopy with the use of the ligands a-j: SPANphos (a), dtbpf (b), Xantphos (c), dippf (d), DPEphos (e), dtbpx (f), dppf (g), dppp (h), calix-6-diphosphite (j). Acetyl palladium complexes containing trans-coordinating ligands that resist cis coordination (SPANphos, dtbpf) showed no methanolysis. Trans complexes that can undergo isomerization to the cis analogue (Xantphos, dippf, DPEphos) showed methanolyis of the acyl group at a moderate rate. The reaction of [trans-(DPEphos)Pd(C(O)CH(3))](+)[CF(3)SO(3)](-) (2e) with methanol shows a large negative entropy of activation. Cis complexes underwent competing decarbonylation and methanolysis with the exception of 2j, [cis-(calix-diphosphite)Pd(C(O)CH(3))(CD(3)OD)](+)[CF(3)SO(3)](-). The calix-6-diphosphite complex showed a large positive entropy of activation. It is concluded that ester elimination from acylpalladium complexes with alcohols requires cis geometry of the acyl group and coordinating alcohol. The reductive elimination of methyl acetate is described as a migratory elimination or a 1,2-shift of the alkoxy group from palladium to the acyl carbon atom. Cis complexes with bulky ligands such as dtbpx undergo an extremely fast methanolysis. An increasing steric bulk of the ligand favors the formation of methyl propanoate relative to the insertion of ethene leading to formation of oligomers or polymers in the catalytic reaction of ethene, carbon monoxide, and methanol.  相似文献   
26.
Palladium-catalyzed intramolecular arylation of 2-benzyl-5-(2-bromophenyl)-4-phenylpyridazin-3(2H)-one yielded hitherto unknown 2-benzyldibenzo[f,h]phthalazin-1(2H)-one. The synthesis of this new tetracyclic pyridazinone from 2-benzyl-5-(2-aminophenyl)-4-phenylpyridazin-3(2H)-one via a Pschorr type reaction was also investigated. Similarly, the construction of 2-methyldibenzo[f,h]cinnolin-3(2H)-one from 2-methyl-5-(2-bromophenyl)-6-phenylpyridazin-3(2H)-one and 2-methyl-5-(2-aminophenyl)-6-phenylpyridazin-3(2H)-one is also reported. Removal of the N-benzyl protective group of 2-benzyl-dibenzo[f,h]phthalazin-1(2H)-one with AlCl3 yielded unsubstituted dibenzo[f,h]phthalazin-1(2H)-one.  相似文献   
27.
The relative activities of a low-surface crystalline and high-surface amorphous LaOCl, further denoted as S1 and S2, have been compared for the destructive adsorption of CCl4. It was found that the intrinsic activity of S2 is higher than that of S1. Both samples were characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2-physisorption, and Raman and infrared (IR) spectroscopy. IR was used in combination with CO2, CO, and methanol as probe molecules. The CO2 experiments showed that different carbonate species are formed on both materials. For S1, a high surface concentration of bidentate carbonate species and a lower concentration of monodentate carbonate were observed. In the case of S2, bulk carbonates were present together with bridged carbonates. CO adsorption shows that S2 and S1 have very similar Lewis acid sites. However, methanol adsorption experiments showed that S2 had a higher number of stronger Lewis acid sites than S1 and that twofold coordinated methoxy species were more strongly bound than threefold coordinated methoxy species. Because of the analogy between methanol dissociation and the removal of the first chlorine atom in the destructive adsorption of CCl4, the sites enabling twofold coordination were likely to be the same Lewis acid sites actively involved in the destructive adsorption of CCl4. La2O3 was less active than the two LaOCl materials, and therefore, the intrinsic activity of the catalyst increases as the strength of the Lewis acid sites increases. S2 contains more chlorine at the surface than S1, which is expressed by the higher number of sites enabling twofold coordination. Moreover, this explains the difference in destructive adsorption capacity for CCl4 that was observed for the samples S1 and S2. Since LaCl3, being the most acidic phase, is not active for the destructive adsorption of CCl4, basic oxygen atoms, however, remain needed to stabilize the reaction intermediate CCl3 as La-O-CCl3.  相似文献   
28.
Antibiotic resistant infections are projected to cause over 10 million deaths by 2050, yet the development of new antibiotics has slowed. This points to an urgent need for methodologies for the rapid development of antibiotics against emerging drug resistant pathogens. We report on a generalizable combined computational and synthetic approach, called antibody-recruiting protein-catalyzed capture agents (AR-PCCs), to address this challenge. We applied the combinatorial protein catalyzed capture agent (PCC) technology to identify macrocyclic peptide ligands against highly conserved surface protein epitopes of carbapenem-resistant Klebsiella pneumoniae, an opportunistic Gram-negative pathogen with drug resistant strains. Multi-omic data combined with bioinformatic analyses identified epitopes of the highly expressed MrkA surface protein of K. pneumoniae for targeting in PCC screens. The top-performing ligand exhibited high-affinity (EC50 ∼50 nM) to full-length MrkA, and selectively bound to MrkA-expressing K. pneumoniae, but not to other pathogenic bacterial species. AR-PCCs that bear a hapten moiety promoted antibody recruitment to K. pneumoniae, leading to enhanced phagocytosis and phagocytic killing by macrophages. The rapid development of this highly targeted antibiotic implies that the integrated computational and synthetic toolkit described here can be used for the accelerated production of antibiotics against drug resistant bacteria.

Antibody-recruiting protein-catalyzed capture agent (AR-PCCs) are a new class of all-synthetic and highly targeted antibiotics that recruit endogenous immune responses to eliminate drug-resistant microbes.  相似文献   
29.
Relative activity of La2O3, LaOCl, and LaCl3 in the destructive adsorption of CCl4 to CO2 was studied with density-functional theory calculations and temperature-programmed reaction experiments monitored with IR spectroscopy. Integral absorbance of the IR peak for phosgene, which is a reaction intermediate, was obtained as a function of temperature, and initial reaction temperatures were compared for different sample amounts of La2O3 and LaOCl. The initial reaction temperatures of about 390 K for La2O3 and 365 K for LaOCl were practically independent of the tested sample weights, and the lower temperature for LaOCl was attributed to a higher activity of surface sites on this material. Calculations suggest that CCl4 decomposition proceeds through a stepwise Cl donation from CCl4 to the surface and that the overall rate is controlled by the first step: CCl4 splitting into a Cl anion and CCl3 cation over an acid-base pair of surface sites. A lanthanum acid site in the pair initiates the split by interacting with one of the chlorine atoms in CCl4, and an oxygen base site stabilizes the remaining CCl3 fragment. Transition state estimates suggest that the relative activity of surface sites can be ranked in the following order: LaOCl > LaCl3 with a partially dechlorinated surface > La2O3. Surface Lewis acidity and basicity of these materials are summarized in terms of the vibrational frequency for adsorbed CO, energy of the lowest unoccupied molecular orbital, and proton affinity. Higher activity of LaOCl is attributed to the higher acidity of the lanthanum site, the higher basicity of the oxygen site, and the geometry of the acid-base pair of sites that allows them to interact with CCl4 simultaneously.  相似文献   
30.
Three new luminescent and redox-active Ru(II) complexes containing novel dendritic polypyridine ligands have been synthesized, and their absorption spectra, luminescence properties (both at room temperature in fluid solution and at 77 K in rigid matrix), and redox behavior have been investigated. The dendritic ligands are made of 1,10-phenanthroline coordinating subunits and of carbazole groups as branching sites. The first and second generation species of this novel class of dendritic ligands (L1 and L2, respectively; see Figure 1 for their structural formulas) have been prepared and employed. The metal dendrimers investigated are [Ru(bpy)(2)(L1)](2+) (1; bpy = 2,2'-bipyridine), [Ru(bpy)(2)(L2)](2+) (2), and [Ru(L1)(3)](2+) (3; see Figure 2). For the sake of completeness and comparison purposes, also the absorption spectra, redox behavior, and luminescence properties of L1 and L2 have been studied, together with the properties of 3,6-di(tert-butyl)carbazole (L0) and [Ru(bpy)(2)(phen)](2+) (4, phen = 1,10-phenanthroline). The absorption spectra of the free dendritic ligands show features which can be assigned to the various subunits (i.e., carbazole and phenanthroline groups) and additional bands at lower energies (at lambda > 300 nm) which are assigned to carbazole-to-phenanthroline charge-transfer (CT) transitions. These latter bands are significantly red-shifted upon acid and/or zinc acetate addition. Both L1 and L2 exhibit relatively intense luminescence at room temperature in fluid solution (lifetimes in the nanosecond time scale, quantum yields of the order of 10(-2)-10(-1)) and at 77 K in rigid matrix (lifetimes in the millisecond time scale). Such a luminescence is assigned to CT states at room temperature and to phenanthroline-centered pi-pi triplet levels at 77 K. The room-temperature luminescence of L1 and L2 is totally quenched by acid or zinc acetate. The metal dendrimers exhibit the typical absorption and luminescence properties of Ru(II) polypyridine complexes. In particular, metal-to-ligand charge-transfer (MLCT) bands dominate the visible absorption spectra, and formally triplet MLCT levels govern the excited-state properties. Excitation spectroscopy evidences that all the light absorbed by the dendritic branches is transferred with unitary efficiency to the luminescent MLCT states in 1-3, showing that the new metal dendrimers can be regarded as efficient light-harvesting antenna systems. All the free ligands and metal dendrimers exhibit a rich redox behavior (except L2 and 3, whose redox behavior was not investigated because of solubility reasons), with clearly attributable reversible carbazole- and metal-centered oxidation and polypyridine-centered reduction processes. The electronic interaction between the carbazole redox-active sites of the dendritic ligands is affected by Ru(II) coordination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号