首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   28篇
  国内免费   1篇
化学   249篇
晶体学   4篇
力学   5篇
数学   15篇
物理学   72篇
  2023年   9篇
  2022年   10篇
  2021年   11篇
  2020年   9篇
  2019年   12篇
  2018年   6篇
  2017年   17篇
  2016年   15篇
  2015年   14篇
  2014年   6篇
  2013年   17篇
  2012年   18篇
  2011年   30篇
  2010年   18篇
  2009年   13篇
  2008年   23篇
  2007年   20篇
  2006年   15篇
  2005年   11篇
  2004年   5篇
  2003年   12篇
  2002年   8篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1967年   1篇
  1966年   5篇
  1965年   1篇
排序方式: 共有345条查询结果,搜索用时 687 毫秒
41.
Our laboratory has reported the elaboration of an iterative strategy for the synthesis of dendritic macromolecules from conventional monomers. This synthetic method involves a combination of self‐regulated metal‐catalyzed living radical polymerization initiated from arenesulfonyl chlorides and an irreversible terminator multifunctional initiator (TERMINI). The previous TERMINI, (1,1‐dimethylethyl)[[1‐[3,5‐bis(S‐phenyl‐4‐N,N′ diethylthiocarbamate)phenyl]ethenyl]oxy]dimethylsilane, was prepared in nine reaction steps. The replacement of the previous TERMINI with one that requires only three steps for its synthesis, diethylthiocarbamic acid S‐{3‐[1‐(tert‐butyl‐dimethyl‐silanyloxy)‐vinyl]‐5‐diethylcarbamoylsulfanyl‐phenyl} ester, and the use of the more reactive Cu2S/2,2′‐bipyridine rather than the Cu2O/2,2′‐bipyridine self‐regulated catalyst have generated an accelerated method for the synthesis of dendritic macromolecules. This method provides rational design strategies for the synthesis of dendritic macromolecules with different compaction by the use of a single monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4894–4906, 2005  相似文献   
42.
The use of Ka Band (20/30 GHz) for future satellite communications has been addressed. The exploitation of Ka band with a bandwidth of 2500 MHz seems to represent the largest significant achievement in satellite communications potential, so far. The problems associated with the use of this frequency band such as attenuation and receiver noise temperature (floor) variation with rain has been addressed. The receiver noise floor variation with rain has so far been ignored. Therefore, in view of propagation and noise study over this Ka Band, both signal attenuation and receiver noise floor variations with rain rate are estimated using dual frequency radiometers operating at 22.235 and 31.4 GHz over a tropical station, Calcutta, India.  相似文献   
43.
M M Panja  P K Bera  B Talukdar 《Pramana》1995,45(6):499-509
A rigorous derivation of the optical theorem (OT) from the conservation of probability flux (CPF) is presented for scattering on an arbitrary spherically symmetric potential inN-spatial dimensions (ND). The constructed expression for the OT is found to yield the corresponding well-known results for two- and three-dimensional cases in a rather natural way. The Aharonov-Bohm (AB) effect is considered as a scattering event of an electron by a magnetic field confined in an infinitely long shielded solenoid and a similar derivation is attempted for an appropriate optical theorem. Our current understanding of the scattering theory is found to be inadequate for the purpose. The reason for this is discussed in some detail.  相似文献   
44.
45.
Theodorsen's method for calculating the incompressible potential flow past an aerofoil is viewed afresh. It is found that some simple modifications to the computational process make the computations relatively faster, easier and more accurate. The new modifications are applicable to the analysis of conventional aerofoils with up to moderate thickness and camber ratios. Several examples are presented to show the effectiveness of the modifications.  相似文献   
46.
P K Bera  Tapas Sil 《Pramana》2013,80(1):31-39
In this work, an alternative treatment known as Nikiforov–Uvarov (NU) method is proposed to find the exact solutions of the Feinberg–Horodecki equation for the time-dependent potentials. The present procedure is illustrated with two examples: (1) time-dependent Wei Hua oscillator, (2) time-dependent Manning–Rosen potential.  相似文献   
47.
Porous solids that can be switched between different forms with distinct physical properties are appealing candidates for separation, catalysis, and host–guest chemistry. In this regard, porous organic cages (POCs) are of profound interest because of their solution‐state accessibility. However, the application of POCs is limited by poor chemical stability. Synthesis of an exceptionally stable imine‐linked (4+6) porous organic cage ( TpOMe‐CDA ) is reported using 2,4,6‐trimethoxy‐1,3,5‐triformyl benzene (TpOMe) as a precursor aldehyde. Introduction of the ‐OMe functional group to the aldehyde creates significant steric and hydrophobic characteristics in the environment around the imine bonds that protects the cage molecules from hydrolysis in the presence of acids or bases. The electronic effect of the ‐OMe group also plays an important role in enhancing the stability of the reported POCs. As a consequence, TpOMe‐CDA reveals exceptional chemical stability in neutral, acidic and basic conditions, even in 12 m NaOH. Interestingly, TpOMe‐CDA exists in three different porous and non‐porous polymorphic forms (α, β, and γ) with respect to differences in crystallographic packing and the orientation of the flexible methoxy groups. All of the polymorphs retain their crystallinity even after treatment with acids and bases. All the polymorphs of TpOMe‐CDA differ significantly in their properties as well as morphology and could be reversibly switched in the presence of an external stimulus.  相似文献   
48.
The main objective of the paper is to make an efficient design of the input and output coaxial coupler for a helix TWTs. An approach has been developed for the efficient design and analysis of the coaxial couplers in the practical situation. Normally multi-section impedance transformer approach is used for any wide band coupler. For a space helix TWT, coupler should be wide bandwidth and small size. In this case coupler is matched with helix slow wave structure and the standard 50-ohm connectors. The simulated return loss (dB) profile for different type of couplers is obtained by using Ansoft HFSS, CST microwave studio and compares those with experimental results. The tip loss design at sever ends for the input and the output section has been also optimized.  相似文献   
49.
A series of copper (II) ( 1 and 3 ) and cobalt (II/III) ( 2 , 4 and 5 ) complexes comprising different imino‐phenolate ligands DCH , DTH and DBH 2 (where DCH = 2,4‐dichloro‐6‐((mesitylimino)methyl)phenol, DTH = 2,4‐di‐tert‐butyl‐6‐((mesitylimino)methyl) phenol and DBH 2 = 2,4‐dibromo‐6‐((mesitylimino)methyl)phenol) have been prepared with excellent yield and high purity. By utilizing different spectroscopic tools such as UV–visible, electrospray ionization (ESI)‐mass, Fourier‐transform infrared (FTIR) spectrometry and elemental analysis, the prepared complexes ( 1 – 5 ) were thoroughly characterized. The molecular structure of the synthesized complexes was ascertained by using single‐crystal X‐ray diffraction studies (SCXRDs). The experiment reveals that Complexes 1 – 5 bind to calf thymus DNA (CT‐DNA) through non‐intercalative way with good interacting abilities. However, 1 – 5 are excellent quenchers of the fluorescence intensity of bovine serum albumin (BSA) following the static pathway. Additionally, they had shown remarkable cytotoxic potential against MCF‐7 (mammary gland adenocarcinoma) and A549 (lung adenocarcinoma) cell lines. The IC50 values associated with these complexes were much lower than the conventional drug cisplatin. Apoptosis‐induced cell death was confirmed from the DNA fragmentation studies and Hoechst 33342 staining. The 2′,7′‐dichlorofluorescein diacetate (DCFDA) assay indicates that the complex mediated reactive oxygen species (ROS) generation is accountable for governing the apoptosis mechanism via oxidative cell distress. Apart from these studies, by carrying out density functional theory (DFT) method, highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap calculations and optimized structures of the synthesized complexes were accomplished.  相似文献   
50.
Four new zinc (II) complexes [Zn (HL1H)Br2] (1), [Zn (HL1H)Cl2] (2), [Zn2(HL2)Br3] (3), and [Zn (HL2)Cl] (4) have been synthesized by adopting template synthetic strategy and utilizing two homologous Schiff base ligands (H2L1 = 4-bromo-2-{[2-(2-hydroxyethylamino)-ethylimino]-methyl}-6-methoxyphenol, H2L2 = 4-bromo-2-{[3-(2-hydroxyethylamino)propylimino]methyl}-6-methoxyphenol), differing in one -CH2- unit in the ligating backbone, by adopting template synthetic strategy. All the complexes have been characterized by single crystal X-ray diffraction analysis as well as by other routine physicochemical techniques. Ligand mediated structural variations have been observed and rationalized by density functional theoretical (DFT) calculations. Interaction of the complexes 1–4 with Bovine Serum Albumin protein (BSA) has been studied by different spectroscopic techniques. A complete thermodynamic profile (ΔHo, ΔSo and ΔGo) was evaluated initially from the change in absorption and fluorescence spectra upon addition of BSA to the complexes. Appreciable binding constant values in the range ~ 0.94–4.51 × 104 M−1 indicate efficient binding tendency of the complexes to BSA with the sequence 1 ≅ 2 > 3 ≅ 4. Circular dichroism (CD), isothermal calorimetric titration experiments, molecular docking and molecular dynamics have been performed to gain deep insight into the binding regions of complex 1 to BSA. Experimental evidences suggest an interaction of zinc complexes at the surface of BSA protein and this particular binding has been exploited to determine unknown concentration of BSA protein. For this purpose complex 1 was explored as a BSA protein quantification tool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号