首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315587篇
  免费   3789篇
  国内免费   1094篇
化学   171482篇
晶体学   4464篇
力学   13045篇
综合类   7篇
数学   36385篇
物理学   95087篇
  2020年   1992篇
  2019年   1963篇
  2018年   1970篇
  2017年   1882篇
  2016年   3878篇
  2015年   3263篇
  2014年   4447篇
  2013年   14008篇
  2012年   10760篇
  2011年   13395篇
  2010年   8313篇
  2009年   8281篇
  2008年   12366篇
  2007年   12608篇
  2006年   12251篇
  2005年   11185篇
  2004年   10076篇
  2003年   8887篇
  2002年   8744篇
  2001年   10150篇
  2000年   7747篇
  1999年   6133篇
  1998年   4918篇
  1997年   4750篇
  1996年   4792篇
  1995年   4387篇
  1994年   4134篇
  1993年   3979篇
  1992年   4464篇
  1991年   4315篇
  1990年   4026篇
  1989年   3845篇
  1988年   4136篇
  1987年   3809篇
  1986年   3699篇
  1985年   5341篇
  1984年   5413篇
  1983年   4393篇
  1982年   4772篇
  1981年   4806篇
  1980年   4557篇
  1979年   4675篇
  1978年   4683篇
  1977年   4663篇
  1976年   4612篇
  1975年   4521篇
  1974年   4374篇
  1973年   4537篇
  1972年   2583篇
  1971年   1889篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   
952.
A new phosphorous‐containing fatty acid diepoxide was obtained from 10‐undecenoyl chloride and 10‐(2′,5′‐dihydroxyphenyl)‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and crosslinked with 4,4′‐diaminodiphenylmethane and bis(m‐aminophenyl)methylphosphine oxide. The properties of the thermosetting materials were evaluated by differential scanning calorimetry, dynamic mechanical thermal analysis, thermogravimetric analysis, and limiting oxygen index (LOI). Thermal and thermooxidative degradation was studied by gas chromatography/mass spectrometry, FTIR, 31P magic angle spinning NMR spectroscopy, and scanning electron microscopy. LOI values indicate good flame‐retardant properties that are related to the formation of a protective phosphorous‐rich layer that slowed down the degradation and prevented it from being total. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5630–5644, 2006  相似文献   
953.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   
954.
A series of new polyimides were prepared via the polycondensation of (3‐amino‐2,4,6‐trimethylphenyl)‐(3′‐aminophenyl)methanone and aromatic dianhydrides, that is, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride. The structures of the polyimides were characterized by Fourier transform infrared and NMR measurements. The properties were evaluated by solubility tests, ultraviolet–visible analysis, differential scanning calorimetry, and thermogravimetric analysis. The two different meta‐position‐located amino groups with respect to the carbonyl bridge in the diamine monomer provided it with an unsymmetrical structure. This led to a restriction on the close packing of the resulting polymer chains and reduced interchain interactions, which contributed to the solubility increase. All the polyimides except that derived from BPDA had good solubility in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfone, and in common organic solvents, such as cyclohexanone and chloroform. In addition, these polyimides exhibited high glass‐transition values and excellent thermal properties, with an initial thermal decomposition temperature above 470 °C and glass‐transition temperatures in the range of 280–320 °C. The polyimide films also exhibited good transparency in the visible‐light region, with transmittance higher than 80% at 450 nm and a cutoff wavelength lower than 370 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1291–1298, 2006  相似文献   
955.
The synthesis and characterization of two groups of novel networks prepared from cyclolinear polysiloxanes are described. The first group of networks from cyclolinear polysiloxanes (N‐CLPSs) was synthesized by the hydrosilation of vinyl‐terminated cyclolinear polyorganosiloxanes [prepared from diacetoxydiethyltetramethylcyclotetrasiloxane (D4Et2OAc2) or diacetoxytriethylpentamethylcyclopentasiloxane (D5Et3OAc2)] with a copolymer of dimethylsiloxane and methylhydrosiloxane as the crosslinking agent. Hydrosilation was effected with a platinum carbonyl catalyst with a cyclovinylsiloxane moderator. The second group of networks (N‐eCLPSs) was prepared similarly with extended cyclolinear polysiloxanes. The mechanical properties of the novel networks were comparable to those of polydimethylsiloxane networks (N‐PDMS). The oxygen permeabilities were similar to or slightly higher than that of N‐PDMS. The glass‐transition temperatures of D4Et2OAc2‐ and D5Et3OAc2‐based N‐CLPSs were ?67.8 and ?90.8 °C, respectively, whereas the incorporation of polydimethylsiloxane spacers into similar N‐eCLPSs lowered their glass‐transition temperatures to ?109.7 and ?115.0 °C. Upon heating to 800 °C in air, N‐CLPSs yielded more residue than N‐eCLPSs, which in turn yielded more residue than N‐PDMS. These results may have been due to the presence of T units in the cyclic siloxane units, which may have inhibited chain degradation or the formation of volatile products. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4053–4062, 2006  相似文献   
956.
A practical and divergent synthesis of supported [1,3,5]‐triazine dendritic molecules on Wang resin, PEGA resin, SynPhase? Lanterns, and silica gel is described. The alkylamine linkers used allow derivatization with functionality for both synthetic (e.g., supported reagent and scavenger activity) and chemical biology applications. The use of supported intermediates allows differentiation of symmetric linkers without the need for protecting group chemistry. The synthetic route uses inexpensive, readily available starting materials in a straightforward and scaleable strategy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2248–2259, 2006  相似文献   
957.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   
958.
Living radical polymerization of n‐butyl acrylate was achieved by single electron transfer/degenerative‐chain transfer mediated living radical polymerization in water catalyzed by sodium dithionate. The plots of number–average molecular weight versus conversion and ln[M]0/[M] versus time are linear, indicating a controlled polymerization. This methodology leads to the preparation of α,ω‐di(iodo) poly (butyl acrylate) (α,ω‐di(iodo)PBA) macroinitiators. The influence of polymerization degree ([monomer]/[initiator]), amount of catalyst, concentration of suspending agents and temperature were studied. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV), and refractive index (RI). The methodology studied in this work represents a possible route to prepare well‐tailored macromolecules made of butyl acrylate in an environmental friendly reaction medium. Moreover, such materials can be subsequently functionalized leading to the formation of different block copolymers of composition ABA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2809–2825, 2006  相似文献   
959.
The treatment of nanoscopic silica grafted in the blend during the processing of silica‐filled styrene butadiene rubber was performed with silane, introduced at different concentrations, or at a constant concentration with a given length of alkyl chain. From swelling measurements in water and in solvent, the maximum silane content that can be grafted has been calculated as a function of the length of the silane alkyl chains as well as their efficiency to cover the silica surface. The found values are close to the values found in the literature for grafting in solution. Moreover, a direct correspondence between the length of the silane alkyl chains and their concentration has been deduced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 143–152, 2006  相似文献   
960.
The encapsulation of the nanocrystalline manganese‐doped zinc sulfide (ZnS:Mn) in poly(styrene‐b‐2vinylpyridine) (PS‐PVP) diblock copolymers is reported. Below the critical micelle concentration in the absence of nanocrystals (NCs), inverse micelles of PS‐PVP were induced by adding ZnS:Mn NCs, the presence of which was confirmed by scanning force microscope and dynamic light scattering. In toluene, a PS‐selective solvent, the less‐soluble PVP blocks preferentially surround the ligand‐coated ZnS:Mn NCs. For PS‐PVP encapsulated ZnS:Mn NCs, the ratio of blue emission to orange emission of ZnS:Mn NCs is dependent on both the concentration of PS‐PVP and the solvent quality. The pyridine of PVP blocks form complexes with the Zn atoms via the nitrogen lone pair and thus the sulfur vacancies are passivated. As a result, the defect‐related blue emission is selectively quenched even when the micelles are not formed. As the concentration of PS‐PVP encapsulating the ZnS:Mn NCs increases, the intensity of blue emission decreases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3227–3233, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号