首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2865篇
  免费   60篇
  国内免费   10篇
化学   1475篇
晶体学   21篇
力学   71篇
数学   306篇
物理学   1062篇
  2021年   24篇
  2020年   22篇
  2019年   20篇
  2016年   36篇
  2015年   39篇
  2014年   53篇
  2013年   66篇
  2012年   96篇
  2011年   117篇
  2010年   49篇
  2009年   49篇
  2008年   120篇
  2007年   102篇
  2006年   119篇
  2005年   126篇
  2004年   88篇
  2003年   67篇
  2002年   65篇
  2001年   63篇
  2000年   46篇
  1999年   32篇
  1998年   30篇
  1997年   43篇
  1996年   66篇
  1995年   63篇
  1994年   57篇
  1993年   72篇
  1992年   44篇
  1991年   25篇
  1990年   31篇
  1989年   37篇
  1988年   33篇
  1987年   30篇
  1986年   36篇
  1985年   26篇
  1984年   31篇
  1983年   26篇
  1982年   27篇
  1981年   23篇
  1980年   30篇
  1979年   20篇
  1978年   25篇
  1975年   30篇
  1974年   20篇
  1973年   21篇
  1969年   19篇
  1968年   50篇
  1967年   117篇
  1966年   111篇
  1965年   71篇
排序方式: 共有2935条查询结果,搜索用时 19 毫秒
141.
A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4′-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2(py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.  相似文献   
142.
Intermediate reflector layers are commonly used for light man‐agement purposes in multi‐junction silicon based devices containing a‐Si:H top‐ and µc‐Si:H bottom‐sub‐cells. A low resistance of such layers can have a severe impact on the solar module performance due to shunting of the bottom sub‐cell by the P2 scribe. A common solution for this problem is the use of an additional scribe line. However, not only the additional processing step is disadvantageous but also the dead area losses are increased as well by the additional scribe. This work introduces a novel solar cell stripe interconnection scheme that requires only three scribing processes with similar dead area losses as they would be apparent in the standard interconnection scheme. An implementation to mini modules shows no negative impact on the electrical properties and simultaneously reducing the required number of scribing steps. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
143.
144.
145.
During the past 10 years iron‐catalyzed reactions have become established in the field of organic synthesis. For example, the complex anion [Fe(CO)3(NO)]?, which was originally described by Hogsed and Hieber, shows catalytic activity in various organic reactions. This anion is commonly regarded as being isoelectronic with [Fe(CO)4]2?, which, however, shows poor catalytic activity. The spectroscopic and quantum chemical investigations presented herein reveal that the complex ferrate [Fe(CO)3(NO)]? cannot be regarded as a Fe?II species, but rather is predominantly a Fe0 species, in which the metal is covalently bonded to NO? by two π‐bonds. A metal–N σ‐bond is not observed.  相似文献   
146.
The synthesis and characterization of a new type of chromophore, namely PePc consisting of a central phthalocyanine core and four fused perylene–bisimide (PBI) units is described for the first time. The entire architecture represents a highly extended conjugated heterocyclic π‐system with C4h symmetry. In order to guarantee pronounced solubility in organic solvents the corresponding PBI units were bay‐functionalized with tert‐butylphenoxy substituents. Next to the metal‐free macrocycle, PePcH2, also metallated macrocycles PePcM (M=Zn, Ni, Pb, Ru, Fe) were synthesized. The extensive fusion of the corresponding aromatic building blocks to the very large extended π‐system leads to a very narrow HOMO–LUMO gap and as a consequence to transparency in the visible but light absorption in the NIR region. Significantly, the azomethine N‐atoms N1?N4 of PePcM and PePcH2 are highly basic. The corresponding tetraprotonated systems can only be deprotonated with very strong non‐nucleophilic bases such as phosphazene bases. In the protonated forms PePcMH44+ and PePcMH64+ the absorption maximum is shifted back to the visible region due to the loss of conjugation. The experimental findings were corroborated with quantum mechanical calculations.  相似文献   
147.
A regio‐ and enantioselective tandem reaction is reported capable of directly transforming readily accessible achiral allylic alcohols into chiral sulfonyl‐protected allylic amines. The reaction is catalyzed by the cooperative action of a chiral ferrocene palladacycle and a tertiary amine base and combines high step‐economy with operational simplicity (e.g. no need for inert‐gas atmosphere or catalyst activation). Mechanistic studies support a PdII‐catalyzed [3,3] rearrangement of allylic carbamates—generated in situ from the allylic alcohol and an isocyanate—as the key step, which is followed by a decarboxylation.  相似文献   
148.
Benzoxazinoids are chemical defenses against herbivores and are produced by many members of the grass family. These compounds are stored as stable glucosides in plant cells and require the activity of glucosidases to release the corresponding toxic aglucones. In maize leaves, the most abundant benzoxazinoid is (2R)‐DIMBOA‐Glc, which is converted into the toxic DIMBOA upon herbivory. The ways in which three Spodoptera species metabolize this toxin were investigated. (2S)‐DIMBOA‐Glc, an epimer of the initial plant compound, was observed in the insect frass, and the associated glucosyltransferase activity was detected in the insect gut tissue. The epimeric glucoside produced by the insect was found to be no longer reactive towards plant glucosidases and thus cannot be converted into a toxin. Stereoselective reglucosylation thus represents a detoxification strategy in Spodoptera species that might help to explain their success as agricultural pests on benzoxazinoid‐containing crops.  相似文献   
149.
The morphological evolution of poly(ε-caprolactone) (PCL)/octaisobutyl polyhedral oligomeric silsesquioxane (IBUPOSS) films was analyzed using scanning electron microscopy (SEM) and polarized optical microscopy (POM). The morphologies of the blend films with PCL/IBUPOSS mass ratios of 95:5 to 50:50 were discussed according to decomposition mechanism in relation to film composition and thickness. In addition to the morphological regime for films with lower IBUPOSS loadings, in which the growth of PCL spherulites was nearly independent on the presence of fine IBUPOSS aggregates, two new morphological regimes were observed for the films with higher IBUPOSS loadings: (1) thicker blend films exhibited a rich dynamics, giving rise to a trilayer structure and (2) the decomposition of thinner films was induced by the kinetically controlled growth of IBUPOSS aggregates. By varying the thickness and the composition of the blend films, the current study provides important new insight into the rich phase behavior of nanoparticle-filled polymer films.  相似文献   
150.
Thermoelectric materials with a high figure of merit, ZT, are the essential basis to build thermoelectric generators, which can directly convert heat into electricity. Severe plastic deformation (SPD) via high-pressure torsion (HPT) was successfully applied to enhance ZT of ball-milled and hot-pressed skutterudites as well as to produce bulk nanostructured skutterudites directly from powders. SPD introduces many defects into the sample and in parallel the crystallite size is significantly reduced. During measurement-induced heating these defects anneal partially out, and the grains grow. In this work for the first time systematically the changes of the temperature-dependent electrical resistivity and of thermal expansion were compared. It could be shown that for p- and n-type skutterudites, being hot-pressed and HPT-processed as well as directly HPT-processed from compacted powder, these changes occur more or less simultaneously within the same temperature ranges. This evaluation gives a much deeper insight into the thermoelectric behavior of HPT samples under the influence of changing temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号