首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24319篇
  免费   3762篇
  国内免费   2629篇
化学   16932篇
晶体学   296篇
力学   1439篇
综合类   239篇
数学   2661篇
物理学   9143篇
  2024年   78篇
  2023年   504篇
  2022年   818篇
  2021年   877篇
  2020年   984篇
  2019年   905篇
  2018年   752篇
  2017年   727篇
  2016年   1100篇
  2015年   1036篇
  2014年   1293篇
  2013年   1672篇
  2012年   2074篇
  2011年   2077篇
  2010年   1425篇
  2009年   1366篇
  2008年   1529篇
  2007年   1403篇
  2006年   1342篇
  2005年   1085篇
  2004年   869篇
  2003年   720篇
  2002年   623篇
  2001年   519篇
  2000年   512篇
  1999年   590篇
  1998年   487篇
  1997年   428篇
  1996年   436篇
  1995年   387篇
  1994年   357篇
  1993年   325篇
  1992年   269篇
  1991年   229篇
  1990年   235篇
  1989年   159篇
  1988年   119篇
  1987年   84篇
  1986年   97篇
  1985年   65篇
  1984年   37篇
  1983年   39篇
  1982年   37篇
  1981年   21篇
  1980年   8篇
  1979年   6篇
  1976年   1篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
991.
Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO Faraday efficiency of ≈95 % and an HCOO partial current of ≈250 mA cm−2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2RR catalysts.  相似文献   
992.
The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.  相似文献   
993.
The epoxidation of propylene with dilute H2O2 aqueous solution over titanium silicalite-1 (TS-1) zeolite catalyst is a green chemical reaction for propylene oxide (PO) production. Carrying out the reaction in gas-phase can get rid of problems caused by using methanol solvent. This paper reports an attempt of using non-zeolite catalyst for the gas-phase epoxidation. Amorphous Ti/SiO2, obtained by grafting amorphous SiO2 with TCl4 in ethanol solvent in a chemical liquid-phase deposition (CLD) process, has been used as the catalyst. Results show that the CLD Ti/SiO2 with appropriate Si/Ti molar ratio is an active catalyst for gas-phase epoxidation, achieving 9.8 % propylene conversion and 66.9 % PO selectivity with 40.3 % H2O2 utilization, which indicates that this amorphous Ti/SiO2 catalyst deserves extensive studies in the future.  相似文献   
994.
Platinum-based complexes are among the most widely utilized cancer therapeutics. Current Pt(II) drugs face some challenges including toxicity and drug resistance. To solve these issues, great efforts have been devoted to developing nonclassical platinum complexes, such as Pt(IV) prodrugs, that act via mechanisms distinct from those of the approved drugs. Compared with active Pt(II) counterparts, Pt(IV) complexes are relatively inert. Although direct interactions between Pt(IV) complexes and nucleotides have been reported, the reaction is slow due to the kinetic inertness of Pt(IV) complexes. Herein, we design and synthesize a Pt(IV) monotrifluoromethyl complex, in which the chloride ligand that is trans to trifluoromethyl ligand is reactive. The Pt(IV) monotrifluoromethyl complex is very stable in water but displays high reactivity towards various substrates including buffer components and 5’-dGMP. The study of reaction mechanism reveals that this Pt(IV) complex reacts with phosphate via SN2 nucleophilic substitution pathway, which is different from Pt(II) drugs. The Pt(IV) monotrifluoromethyl complex is cytotoxic in human ovarian cancer cells. Our work reports an example of a reactive organometallic Pt(IV) complex that can directly interact with nucleophiles and implies its potential as an anticancer agent.  相似文献   
995.
In this study, a novel strategy to amplify electrochemical signals by mesoporous PdPt nanoparticles with core-shell structures anchored on a three-dimensional PANI@CNTs network as nanozyme labels (PdPt/PANI@CNTs) was proposed for the sensitive monitoring of α-fetoprotein (AFP, Ag). First, the mesoporous PdPt nanoparticles prepared by a facile chemical reduction method had excellent biocompatibility with biomolecules, which could capture a large amount of AFP-Ab2 (Ab2) and exhibit plentiful pores to entrap more thionine (Thi) into mesoporous PdPt nanoparticles with enhanced loading and abundant active sites. Furthermore, the resulting mesoporous PdPt nanoparticles were abundantly dotted on the surface of a three-dimensional PANI@CNTs network with excellent conductivity and a high specific surface area through the bonding of the amino group to form PdPt/PANI@CNTs nanozyme labels. Most importantly, the as-prepared PdPt/PANI@CNTs nanozyme labels exhibited unexpected enzyme-like activity towards the reduction of hydrogen peroxide owing to the highly indexed facets, enhancing the current response to realize signal amplification. In view of the advantages of nanozyme labels and the involvement of gold nanoparticles (AuNPs, which behave as electrode materials) for the sensitive determination of AFP, the as-developed immunosensor could obtain a dynamic working range of 0.001 ng mL−1–100.0 ng mL−1 at a detection limit of 0.33 pg mL−1 via DPV (at 3σ). Furthermore, the nanozyme-based electrochemical immunosensor exhibited remarkable analytical performance, which brought about feasible ideas for disease diagnosis in the future.  相似文献   
996.
This study used a facile method to develop a novel silver/Graphene–polypyrrole (Ag/G–PPy)-modified electrode that can be used as an electrochemical sensor for levosimendan detection. The properties of the synthesized Ag/G–PPy-modified electrode were examined through field-emission scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The Ag/G–PPy-modified electrode exhibited satisfactory current signals toward levosimendan concentrations ranging from 0.21 to 6.88 μM and exhibited a low detection limit (0.12 μM). Accordingly, the proposed electrode can serve as a simple and inexpensive electrochemical sensor for levosimendan detection.  相似文献   
997.
In this work, the preparative separation of quinolyridine alkaloids from seeds of T. lanceolata by conventional and pH-zone-refining counter-current chromatography. Traditional counter-current chromatography separation was performed by a flow-rate changing strategy with a solvent system of ethyl acetate-n-butanol-water (1:9:10, v/v) and 200 mg sample loading. Meanwhile, the pH-zone-refining mode was adopted for separating 2.0 g crude alkaloid extracts with the chloroform-methanol-water (4:3:3, v/v) solvent system using the stationary and mobile phases of 40 mM hydrochloric acid and 10 mM triethylamine. Finally, six compounds, including N-formylcytisine (two conformers) ( 1 ), N-acetycytisine (two conformers) ( 2 ), (-)-cytisine ( 3 ), 13-β-hydroxylthermopsine ( 4 ), N-methylcytisine ( 5 ), and thermopsine ( 6 ) were successfully obtained in the two counter-current chromatography modes with the purities over 96.5%. Moreover, we adopted nuclear magnetic resonance and mass spectrometry for structural characterization. Based on the obtained findings, the pH-zone-refining mode was the efficient method to separate quinolyridine alkaloids relative to the traditional mode.  相似文献   
998.
Colloidal quantum dots display remarkable optical and electrical characteristics with the potential for extensive applications in contemporary nanotechnology. As an ideal instrument for examining surface topography and local density of states (LDOS) at an atomic scale, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) has become indispensable approaches to gain better understanding of their physical properties. This article presents a comprehensive review of the research advancements in measuring the electronic orbits and corresponding energy levels of colloidal quantum dots in various systems using STM and STS. The first three sections introduce the basic principles of colloidal quantum dots synthesis and the fundamental methodology of STM research on quantum dots. The fourth section explores the latest progress in the application of STM for colloidal quantum dot studies. Finally, a summary and prospective is presented.  相似文献   
999.
The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2O-based electrolyte demonstrated more stable cycling performance which displayed ∼100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8–2.0 V and 3,000 cycles with a normal voltage window of 0.8–1.9 V at a current density of 2 A g−1.  相似文献   
1000.
Transition-metal-catalyzed [4+2] heteroannulation of α,β-unsaturated oximes and their derivatives with alkynes has been developed into a powerful strategy for the synthesis of pyridines. It nevertheless lacks regioselectivity when unsymmetrically substituted alkynes are used. We report herein the unprecedented synthesis of polysubstituted pyridines by a formal [5+1] heteroannulation of two readily accessible building blocks. A copper-catalyzed aza-Sonogashira cross-coupling between β,γ-unsaturated oxime esters and terminal alkynes affords ynimines, which, without isolation, undergo an acid-catalyzed domino reaction involving ketenimine formation, 6π-electrocyclization and aromatization to afford pyridines. Terminal alkynes served as a one-carbon donor to the pyridine core in this transformation. Di- through pentasubstituted pyridines are accessible with complete regioselectivity and excellent functional-group compatibility. The first total synthesis of anibamine B, an indolizinium alkaloid with potent antiplasmodial activity, was accomplished featuring this reaction as a key step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号