首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   14篇
化学   117篇
力学   2篇
数学   22篇
物理学   10篇
  2023年   3篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   24篇
  2018年   10篇
  2017年   4篇
  2016年   19篇
  2015年   12篇
  2014年   11篇
  2013年   10篇
  2012年   10篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有151条查询结果,搜索用时 25 毫秒
41.
Askarian  A. R.  Abtahi  H.  Firouz-Abadi  R. D. 《Meccanica》2019,54(11-12):1847-1868

In this paper, numerical investigation of the statical and dynamical stability of aligned and misaligned viscoelastic cantilevered beam is performed with a terminal nozzle in the presence of gravity in two cases: (1) effect of fluid velocity on the flutter boundary of beam conveying fluid and (2) effect of gravity on the buckling boundary of beam conveying fluid. The beam is assumed to have a large width-to-thickness ratio, so the out-of-plane bending rigidity is far higher than the in-plane bending and torsional rigidities. Gravity vector is considered in the vertical direction. Thus, deflection of the beam because of the gravity effect couples the in-plane bending and torsional equations. The beam is modeled by Euler–Bernoulli beam theory, with the flow-induced inertia, Coriolis and centrifugal forces along the beam considered as a distributed load along the beam. Furthermore, the end nozzle is regarded as a lumped mass and modeled as a follower axial force. The extended Hamilton’s principle and the Galerkin method are utilized to derive the bending–torsional equations of motion. The coupled equations of motion are solved as eigenvalue problems. Also, several cases are examined to study the impact of gravity, beam inclination angle, mass ratio, nozzle aspect ratio, bending-to-bending rigidity ratio and bending-to-torsional rigidity ratio on flutter and buckling margin of the system.

  相似文献   
42.

The purpose of the current study was to verify the dose distribution of an Intrabeam-50 kV IORT system using polymer gel dosimetry technique. Results of dose distribution evaluation using NIPAM polymer gel dosimetry were compared with those measured using an ionization chamber and simulated using MCNPX code. Results showed the calculated gamma index was less than 1 with 2% dose-difference/2 mm distance-to-agreement for comparison between NIPAM and ionization chamber as well as between NIPAM and MCNPX simulation. It was concluded that the NIPAM polymer gel dosimetry is useful for verifying the dose distribution of low energy X-ray IORT technique.

  相似文献   
43.
44.
Chemical and electrochemical doping of π-conjugated polymers is an important aspect in determining the performance and enabling the operation of many organic electronic devices, from organic light emitting diodes and thermoelectrics to organic electrochemical transistors. In both chemical doping and electrochemical doping an ionized dopant or counterion is present along with the doped π-conjugated polymer. This dopant or counterion is not a benign spectator, rather, its presence can significantly impact the optical, electronic, and thermoelectric properties of the resulting material. Here, we investigate how counterion structure impacts the electrochemical doping ability, oxidation potential, ionization energy, and polaron absorbance of regioregular (rr) and regiorandom (rra) P3HT. We find that in most cases the anion has a small effect on the polymer oxidation potential, except for in the case of rr-P3HT with the large tetrakis[3,5-bis(trifluoromethyl)phenyl]borate anion. We propose that this large anion is excluded from the crystalline regions and thus the oxidation potential is similar to that of rra-P3HT. The anions also result in significant differences in polaron absorbance and ionization energies, thereby emphasizing the important role of the counterion in determining the optical and electronic properties of doped π-conjugated polymers.  相似文献   
45.
In the present study, pectin-coated gold nanoparticles (GNPs) were used as a candidate for curcumin drug delivery. The effect of the size of synthesized GNPs was examined, as an important factor on the yield of drug delivery. For this purpose, three different sizes of GNPs were first synthesized using a chemical method. The synthesized nanoparticles were then coated with pectin biopolymer. Finally, curcumin drug was loaded in a pectin@GNPs complex. Various methods such as UV–vis spectrophotometry, dynamic light scattering, scanning electron microscopy and Fourier-transform infrared spectroscopy were used to characterize the synthesized GNPs and pectin@GNPs. The encapsulation efficiency and the release percentage of the drug were calculated for two different pH values. Further, an antibacterial study was conducted. The results revealed that 100 nm GNPs had the highest encapsulation efficiency. An investigation of the release rate of curcumin drug at 37°C for 48 h indicated that the amount of drug released was higher in acidic pH than at pH 7.4 with a slow release rate. The electronic structure and the adsorption properties of pectin–GNPs complex were examined using the density functional theory method.  相似文献   
46.
47.
The first purpose of this research was improvement of sensitivity of the normoxic acrylamide-based polymer gel dosimeter. Another aim of this study was investigation of the absorbance of the irradiated gels as well as their relaxation rate variations. In addition, a new optical parameter, area under the absorbance spectrum (AUS), was investigated. Sensitivity improvement was performed by adding glucose and urea to the previously reported acrylamide-based polymer gel formulation and new formulation was named PAGATUG. The formulation which gives the nearest tissue elemental composition has been determined to be 3 % bis, 3 % AA, 5 % gelatine, 5 mM THPC, 0.01 mM HQ, 8.5 % glucose, and 3 % urea. The differences in electron density, number of electrons per gram and effective atomic number of PAGATUG gel were no more than 1, 0.5, and 0.8 % of the corresponding values for the soft tissue respectively. PAGATUG gels were irradiated by 60Co radiotherapy unit photon beams with different doses and imaged using a 1.5T Siemens Avanto MRI scanner for different post irradiation times. In addition, the absorbance of the irradiated gels were evaluated using a double beam spectrophotometer. We found that the R 2-sensitivity of polymer gel was improved by a factor of more than 2.6 in respect of the previously reported PAGAT polymer gel. Dose–absorbance sensitivity was obtained as 0.89 Au Gy?1 and the results showed more stable response in respect of R 2 investigation. An AUS-sensitivity of 107.7 Au nm Gy?1 indicated to steep response variation. This read out parameter showed an acceptable linearity and dynamic dose range.  相似文献   
48.
An optical chemical sensor based on 2-mercaptopyrimidine (2-MP) in plasticized poly(vinyl chloride) (PVC) membrane incorporating (N,N-diethyl-5-(octadecanoylimino)-5H benzo[a]phenoxazine-9-amine (ETH 5294) and sodium tetraphenyl borate (NaTPB) for batch and flow-through determination of mercury ion is described. The response of the sensor is based on selective complexation of Hg2+ with 2-MP in the membrane phase, resulting in an ion exchange process between H+ in the membrane and Hg2+ in the sample solution. The influences of several experimental parameters, such as membrane composition, pH, and type and concentration of the regenerating reagent, were investigated. The sensor has a response range of 2.0 × 10−9 to 2.0 × 10−5 mol L−1 Hg2+ with a detection limit of 4.0 × 10−10 mol L−1 and a response time of ≤45 s at optimum pH of 6.5 with high measurement repeatability and sensor-to-sensor reproducibility. It shows high selectivity for Hg2+ over several transition metal ions, including Ag+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, and common alkali and alkaline earth ions such as Na+, K+, Mg2+, Ca2+, and Pb2+. The sensor membrane can be easily regenerated with dilute acid solutions. The sensor has been used for the determination of mercury ion concentration in water samples.  相似文献   
49.
A new type of dispersive liquid–liquid microextraction is used for the determination of doxepin, citalopram, and fluvoxamine in aqueous matrices. This method is based upon the tandem utilization of dispersive liquid–liquid microextraction, and by providing a high sample clean‐up, it efficiently improves the applicability of the method in complicated matrices. For this purpose, in the first step, the analytes contained in an aqueous sample solution (8.0 mL) were extracted into an organic solvent, and then these analytes were simply back‐extracted into an aqueous acceptor phase (50 μL). The overall extraction time was 7 min, and very simple tools were required for this aim. Optimization of the variables affecting the method such as the type and volume of the organic solvent used and effect of ionic strength was carried out to achieve the best extraction efficiency. Under the optimized experimental conditions, tandem dispersive liquid–liquid microextraction with high‐performance liquid chromatography and UV detection showed a good linearity in the range of 10–5000 ng/mL. The limits of detection were in the range of 3–10 ng/mL. The Intra‐day precisions (relative standard deviation) were 9.2, 4.5, and 4.8, and the recoveries were 58.5, 52.9, and 39.3% for citalopram, doxepin, and fluvoxamine, respectively.  相似文献   
50.
A novel nanomagnetic composite heteropolyacid immobilized chitosan/Fe3O4 was prepared via a facile one-pot synthetic approach. This magnetically recoverable nanocatalyst, H3PMo12O40/chitosan/Fe3O4 (PMo/chit/Fe3O4), was fully characterized by XRD, FTIR, SEM and EDX analysis methods. A rapid, efficient and the chemoselective synthesis of different pyrano-pyrazole derivatives was achieved in excellent yields via a one-pot four-component reaction in the presence of catalytic amount of PMo/Chit/Fe3O4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号