首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32641篇
  免费   1086篇
  国内免费   249篇
化学   22672篇
晶体学   223篇
力学   768篇
数学   5420篇
物理学   4893篇
  2022年   283篇
  2021年   421篇
  2020年   514篇
  2019年   484篇
  2018年   376篇
  2017年   372篇
  2016年   835篇
  2015年   737篇
  2014年   807篇
  2013年   1725篇
  2012年   1866篇
  2011年   2352篇
  2010年   1141篇
  2009年   1004篇
  2008年   2009篇
  2007年   2020篇
  2006年   1996篇
  2005年   1862篇
  2004年   1587篇
  2003年   1382篇
  2002年   1282篇
  2001年   402篇
  2000年   388篇
  1999年   358篇
  1998年   335篇
  1997年   357篇
  1996年   486篇
  1995年   343篇
  1994年   298篇
  1993年   270篇
  1992年   267篇
  1991年   237篇
  1990年   202篇
  1989年   203篇
  1988年   232篇
  1987年   198篇
  1986年   180篇
  1985年   347篇
  1984年   339篇
  1983年   242篇
  1982年   313篇
  1981年   323篇
  1980年   298篇
  1979年   281篇
  1978年   257篇
  1977年   227篇
  1976年   206篇
  1975年   208篇
  1974年   210篇
  1973年   209篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Consumers today demand the use of natural additives and preservatives in all fresh and processed foods, including meat and meat products. Meat, however, is highly susceptible to oxidation and microbial growth that cause rapid spoilage. Essential oils are natural preservatives used in meat and meat products. While they provide antioxidant and antimicrobial properties, they also present certain disadvantages, as their intense flavor can affect the sensory properties of meat, they are subject to degradation under certain environmental conditions, and have low solubility in water. Different methods of incorporation have been tested to address these issues. Solutions suggested to date include nanotechnological processes in which essential oils are encapsulated into a lipid or biopolymer matrix that reduces the required dose and allows the formation of modified release systems. This review focuses on recent studies on applications of nano-encapsulated essential oils as sources of natural preservation systems that prevent meat spoilage. The studies are critically analyzed considering their effectiveness in the nanostructuring of essential oils and improvements in the quality of meat and meat products by focusing on the control of oxidation reactions and microbial growth to increase food safety and ensure innocuity.  相似文献   
992.
Novel energy and atom efficiency processes will be keys to develop the sustainable chemical industry of the future. Electrification could play an important role, by allowing to fine-tune energy input and using the ideal redox agent: the electron. Here we demonstrate that a commercially available Milstein ruthenium catalyst (1) can be used to promote the electrochemical oxidation of ethanol to ethyl acetate and acetate, thus demonstrating the four electron oxidation under preparative conditions. Cyclic voltammetry and DFT-calculations are used to devise a possible catalytic cycle based on a thermal chemical step generating the key hydride intermediate. Successful electrification of Milstein-type catalysts opens a pathway to use alcohols as a renewable feedstock for the generation of esters and other key building blocks in organic chemistry, thus contributing to increase energy efficiency in organic redox chemistry.

Electrification of the Milstein catalyst enabled successful molecular electrocatalytic oxidation of ethanol to the four-electron products acetate and ethyl acetate.

In order to achieve the goals of the Sustainable Development Scenario (SDS) of the International Energy Agency, the chemical industry''s emission should decline by around 10% before 2030.1,2 This could be achieved by increasing energy efficiency and the usage of renewable feedstocks. In this respect, molecular electrocatalytic alcohol oxidation could be powerful tool by potentially providing energy and atom efficiency for organic synthesis and energy applications.2–7 Besides the use of aminoxyl-derivatives,8–13 especially the seminal work of Vizza, Bianchini and Grützmacher demonstrated that (transfer)-hydrogenation (TH) catalysts could be activated electrochemically and used in a so-called “organometallic fuel cell”.14 Other TH systems are however mostly limited to two electron oxidations of secondary or benzylic alcohols (Scheme 1A).15–21Open in a separate windowScheme 1(A) Advantages/limitation of electrochemical homogeneous alcohol oxidation using well-defined catalysts. (B) Current efforts to electrify acceptor-less alcohol dehydrogenation (AAD) systems due to their large range of application in thermal catalysis.As an exception, Waymouth et al. recently reported an example of the intramolecular coupling of vicinal benzylic alcohols to the corresponding esters.19,22 In order to extend the range of possible catalysts candidates, the Waymouth group recently also explored the possibility to use an iron-based acceptor-less alcohol dehydrogenation (AAD) catalysts23 for electrocatalytic alcohol oxidation (Scheme 1B).24 The stability under electrochemical conditions in this case is limited to <2 turnovers, but it opens the door to explore a wide range of AAD reactions under electrochemical conditions. Here, we demonstrate that a commercially available Milstein-type AAD catalyst (1)25 is competent for the electrocatalytic alcohol oxidation of ethanol to ethyl acetate and acetate (Scheme 1B).The cyclic voltammogram (CV) of complex 1 (Fig. 1) shows a quasi-reversible diffusive one electron oxidation wave at 0.2 V (all potentials are referenced vs. Fc+/Fc0) in 0.2 M NaPF6 THF/DFB (2 : 1) (DFB = 1,2 difluoro benzene) assigned to the Ru(ii)–Ru(iii) couple (see ESI, section 2.2). The addition of 1 to a 10 mM sodium ethoxide (NaOEt) solution in 200 mM ethanol (EtOH) in 0.1 M NaPF6 (2 : 1 THF/DFB) gives rise to several waves at ca. −0.5, 0.0 and 0.2 V with currents significantly higher than in the absence of catalysts or substrate, indicative of possible catalytic turnover (Fig. 2). Gradual increase of the EtOH concentration from 200 mM to 1 M is accompanied by the disappearance of the first wave at −0.5 V, while a new oxidation wave appears at ca. −0.25 V (Fig. 2, light to dark green traces).Open in a separate windowFig. 1Scan rate dependence of a 1 mM solution of 1 in in 2 : 1 THF/DFB + 0.2 M NaPF6 (from light to dark green: 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 V s−1, 3 mm GC electrode). Inset: evolution of the peak current as a function of the square root of the scan rate.Open in a separate windowFig. 2CVs of 10 mM NaOEt (grey) and of 5 mM 1 + 5 mM NaOEt with increasing concentrations of EtOH (from light to dark green: 200, 400, 600, 800 and 1000 mM) in 2 : 1 THF/DFB + 0.2 M NaPF6. Scan rate 0.1 V s−1, electrode: 3 mm diameter GC electrode.Increasing the base loading gradually from 5 to 20 mM yields a stark increase of current at this new wave at ca. −0.25 V (Fig. 3). Using (TBA)PF6 instead of NaPF6 (used to avoid Hofmann-elimination26) gave similar results (see ESI, section 2.2–2.5 and section 4). In order to assess catalytic turnover under preparative conditions, controlled potential electrolysis (CPE) was performed. CPE experiments were run in pure ethanol (to reduce cell resistance) in the presence of 0.1 M electrolyte of well soluble bases (e.g. NaOEt, LiOH, see ESI section 4). CPE in 0.1 M LiOH with 1 mM 1 at E = 0 V vs. Fc0/+ delivered ca. 15 mM of acetate and 6 mM of ethyl acetate, corresponding to 21 turnovers (per 4 electrons, or 42 turnovers per two electrons) and a faradaic efficiency (FE) of ca. 62% (see ESI section 4.3). In the absence of applied potential (OCP, open circuit potential), no ethyl acetate was formed (see ESI, section 4.4). Likewise, in the absence of catalyst, the passed charge was significantly lower (7C vs. 40C) with no detected formation of ethyl acetate. The low FE could be due to catalyst degradation, as Ru-nanoparticle formation is observed on the electrode post CPE (confirmed by SEM/Elemental mapping, see ESI section 5). Noteworthy, rinse-test CPE and a CPE using a simple Ru-precursor, RuCl3, did not show any ethyl acetate formation and gave similar results to blank experiments, indicating that Ru-nanoparticles are probably not the active catalyst species and that catalyst instability could be responsible for low FE. Further studies are underway to fully understand catalyst speciation under preparative conditions (see ESI section 4.7) the observed catalytic activity of 1 compares well in terms of TON and product selectivity with other molecular homogeneous TH systems, with most systems being limited to the two-electron oxidation of secondary or benzylic alcohols. The Waymouth group reported a NNC ruthenium pincer for the oxidation of isopropanol to acetone with a TON of 4.18 The same group reported on the usage of phenoxy mediators with an iridium pincer complex, reaching a TON of 8 for the same reaction.22 Bonitatibus and co-workers demonstrated the activity of an iridium-based systems with a TON of 32 for the formation of p-benzaldehyde.17 Appel and co-workers reported on a nickel (TON = 3.1)15 and a cobalt triphos systems (TON = 19.9)16 for benzaldehyde formation from benzyl alcohol. To the best of our knowledge, there is only one acceptor-less alcohol dehydrogenation (AAD) catalyst that has been activated electrochemically so-far,24 generating acetone with a TON <2. Only a handful of molecular systems are known to catalyze the electrochemical four electron alcohol reformation to esters, however at significantly higher potentials (1.15 V vs. Fc+/Fc0).2,27,28 Thus, although not designed for electrochemical applications, 1 shows high activity for the challenging 4 electron oxidation of aliphatic substrates.Open in a separate windowFig. 3CV of 5 mM NaOEt (grey), 5 mM of 1 + 1 M EtOH with varying concentrations of base (5, 10, 15, and 20 mM NaOEt, light to dark green) in 2 : 1 THF/DFB + 0.2 M NaPF6. Scan rate 0.1 V s−1, electrode: 3 mm diameter GC electrode.To achieve the transposition from thermal to electrochemical TH, both Grützmacher et al. and Waymouth took advantage of a fast equilibrium between the alcohol substrate and a metal hydride intermediate that could be readily oxidized. The chemistry of ruthenium pincer AAD systems is well studied (Scheme 2)25,29–33 and allows for a putative assignment of the observed CV-behavior. In the presence of excess base and alcohol (Fig. 2 and and3),3), 1 is expected to yield dearomatized complex 2,25 as well as the alkoxide species 3.25,32 We might therefore assign the first wave at −0.5 V to the oxidation of dearomatized complex 2 and the wave around 0 V to the oxidation of the alkoxide complex 3. Indeed, independently synthesized samples of 2 and 3 (in the presence of excess ethanol) give rise to oxidation half-waves at −0.45 V and −0.1 V respectively (see ESI, section 3 and 5.2). This is also in agreement with the observed behavior upon increasing the alcohol concentration with the expected consumption of dearomatized species 2 and concomitant disappearance of the first oxidation wave at −0.5 V. The equilibrium between 2, 3 and 4 has been reported32 and addition of excess ethanol to 2 is thus not only generating 3, but also is expected to deliver 4 (Scheme 2). The appearance of a new anodic wave at ca. −0.25 V (Fig. 2) is thus attributed to the increasing formation of 4 upon addition of larger amounts of EtOH. Complex 4 is relatively unstable in solution,25,32,33 and decomposes in the presence of electrolyte (see ESI section 3.1). DFT calculations were thus used to predict its oxidation potential (see ESI, section 6), which was in reasonable agreement with the observed wave (−0.19 V). The DFT calculations also confirmed the assignment of the other waves related to the dearomatized complex 2 (−0.33 V) and the ethoxide species 3 (−0.1 V). A more detailed mechanistic analysis remains currently hampered by the chemical instability of 4 under the employed reaction conditions, as well as difficulties to isolate 3 in the solid state (limiting kinetic measurements). DFT calculations were thus used to get a better view on possible reaction pathways (Schemes 2, ,33 and ESI section 6.3). The oxidation of 4 at −0.19 V (DFT) yields the radical cation 5, with a calculated pKa in THF of 8.2. In the presence of NaOEt, 5 should thus deprotonate readily to give radical 6, which has an extremely negative oxidation potential of −2.1 V. At the potential it is generated, 6 should thus directly be oxidized to cationic complex 7. This cationic species 7 has a calculated pKa of 22.7 in THF, which is in good agreement with experimental data from the Saouma group on a similar system.26 The high pKa of 7 in THF also validates the need for a strong base (e.g. NaOEt) to reform dearomatized 2. Both Grützmacher and co-workers,14 as well as Waymouth24 have noted that the accelerating effect during electrocatalysis stems from the oxidation of a metal hydride intermediate that is generated by fast chemical steps. In order to verify this hypothesis and to exclude an electrochemical activation of this hydride formation step, transition state barriers were computed (Scheme 3). Taking the dearomatized complex 2 as a reference point, a first step will form the alkoxide species 3 (TS0 = 21.2 kcal mol−1). Oxidizing 2 to 8 slows down the formation of the alkoxide species (TS0ox = 27.5 kcal mol−1), most-likely due to decreased basicity of the ligand. From the alkoxide species 3 dihydride 4 is formed via a linear, charge-separated transition state TS1 (15.7 kcal mol−1). The role of such linear transition states was highlighted recently in the case of ruthenium pincer catalysis for alcohol oxidation.34–37 In principle, it might be envisioned that the oxidation of the metal center could be an additional driving force for this hydride abstraction step. However, after oxidation, the energy span38,39 rises by about 11 kcal mol−1 (TS1ox = 24.7 kcal mol−1). Likewise, a beta-hydride elimination via side-arm opening is not accelerated either by oxidation (TS2ox = 37.5 kcal mol−1, see ESI section 6.4). It thus seems that the generation of 4 is not accelerated by electron transfer steps and relies on a thermally activated chemical step. Importantly, alkoxide solutions were shown to be excellent hydride donors electrochemically, further corroborating that under the employed basic conditions, generation of 4 from 3 should be fast.40 Oxidation of 4 to 5 also doesn''t accelerate thermal intramolecular release of H2 (TS3Box = 37.5 kcal mol−1), which is significantly higher than neutral thermal H2-releasing states (TS3A and TS3B). The experimentally observed acceleration via electron-transfer is thus proposed to follow a classical ECEC mechanism initiated by the oxidation of 4 to 5 (at roughly −0.19 V (DFT)), followed by deprotonation and re-oxidation as described above, finally delivering 2 at the electrode surface. Importantly, at the electrode surface 2 and 3 should be oxidized at the employed potentials, but based on DFT-calculations, these pathways are thought to be non-productive (Scheme 3) and could explain the low catalyst life-time and degradation under electrochemical conditions.Open in a separate windowScheme 2Reactivity of pyridine-based ruthenium complexes via dearomatization/aromatization, as well as DFT-based.Open in a separate windowScheme 3DFT-calculated energy landscape for the neutral (black dotted lines and bars) and cationic surface (blue dotted lines and bars) of ethanol dehydrogenation starting from 2 or its cationic analogue 8.  相似文献   
993.
994.
The reaction of elemental iodine and SO3 in a sealed glass ampoule yielded a turquoise‐colored solution. At temperatures below 7 °C, deep red crystals of (I4)[S6O19] grow. With the addition of B2O3 and pyridine‐SO3 complex red crystals of (I4)[B(S2O7)2]2 can be obtained after heating the mixture to 120 °C. The combination of an (I4)2+ cation with oxoanions has previously not been observed. Both anions have a significant but different influence on the structural properties of the (I4)2+ cation.  相似文献   
995.
The effect of dimethyl sulfoxide (DMSO) in rheumatoid arthritis (RA) human fibroblast-like synoviocytes (FLSs) has been studied on five different samples harvested from the joints (fingers, hands and pelvis) of five women with RA. At high concentrations (>5%), the presence of DMSO induces the cleavage of caspase-3 and PARP-1, two phenomena associated with the cell death mechanism. Even at a 0.5% concentration of DMSO, MTT assays show a strong toxicity after 24 h exposure (≈25% cell death). Therefore, to ensure a minimum impact of DMSO on RA FLSs, our study shows that the concentration of DMSO has to be below 0.05% to be considered safe.  相似文献   
996.
王树峰   《物理》2016,45(8):533-533
来自LISA 探路者任务的初步结果表明,对于处于自由落体状态的两个测试立方体,它们之间的相对加速的噪声很小,满足天基引力波探测的要求。 
2016年2月,激光干涉引力波天文台(LIGO)探测到由两个黑洞合并引发的引力波。这一结果的公布使很多物理和天文学领域的科学家感到震惊和兴奋。当所有的眼光转向LIGO时,LISA探路者(LPF)正静悄悄但信心十足地为引力波天文学的下一场革命铺平道路。LPF 是激光干涉空间天线(LISA)引力波探测器的一项技术验证任务。2015 年12 月上旬,宇宙飞船发射升空。经过50 天的飞行,LPF到达日地系统拉格朗日点1并进入轨道。飞船发射6 个月后,LPF团队宣布了任务的首批结果。  相似文献   
997.
Trypanosoma brucei, the causative agent for human African trypanosomiasis, is an emerging ergosterol-dependent parasite that produces chokepoint enzymes, sterol methyltransferases (SMT), not synthesized in their animal hosts that can regulate cell viability. Here, we report the lethal effects of two recently described natural product antimetabolites that disrupt Acanthamoeba sterol methylation and growth, cholesta-5,7,22,24-tetraenol (CHT) and ergosta-5,7,22,24(28)-tetraenol (ERGT) that can equally target T. brucei. We found that CHT/ERGT inhibited cell growth in vitro, yielding EC50 values in the low nanomolar range with washout experiments showing cidal activity against the bloodstream form, consistent with their predicted mode of suicide inhibition on SMT activity and ergosterol production. Antimetabolite treatment generated altered T. brucei cell morphology and death rapidly within hours. Notably, in vivo ERGT/CHT protected mice infected with T. brucei, doubling their survival time following daily treatment for 8–10 days at 50 mg/kg or 100 mg/kg. The current study demonstrates a new class of lead antibiotics, in the form of common fungal sterols, for antitrypanosomal drug development.  相似文献   
998.
Boswellia trees, found throughout the Middle East and parts of Africa and Asia, are the source of frankincense oil. Since antiquity, frankincense has been traded as a precious commodity, but it has also been used for the treatment of chronic disease, inflammation, oral health, and microbial infection. More recently, the bioactive components of Boswellia trees have been identified and characterized for their effects on cancer, microbial infection (especially infection by oral pathogens), and inflammation. Most studies have focused on cell lines, but more recent research has also investigated effects in animal models of disease. As natural products are considered to be safer than synthetic drugs, there is growing interest in further developing the use of substances such as frankincense oil for therapeutic treatment.  相似文献   
999.
Body temperature is usually employed in clinical practice by strict binary thresholding, aiming to classify patients as having fever or not. In the last years, other approaches based on the continuous analysis of body temperature time series have emerged. These are not only based on absolute thresholds but also on patterns and temporal dynamics of these time series, thus providing promising tools for early diagnosis. The present study applies three time series entropy calculation methods (Slope Entropy, Approximate Entropy, and Sample Entropy) to body temperature records of patients with bacterial infections and other causes of fever in search of possible differences that could be exploited for automatic classification. In the comparative analysis, Slope Entropy proved to be a stable and robust method that could bring higher sensitivity to the realm of entropy tools applied in this context of clinical thermometry. This method was able to find statistically significant differences between the two classes analyzed in all experiments, with sensitivity and specificity above 70% in most cases.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号