首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445773篇
  免费   3674篇
  国内免费   1622篇
化学   212260篇
晶体学   6997篇
力学   23325篇
综合类   4篇
数学   73929篇
物理学   134554篇
  2020年   2972篇
  2019年   3341篇
  2018年   14258篇
  2017年   14113篇
  2016年   12306篇
  2015年   4727篇
  2014年   6787篇
  2013年   16758篇
  2012年   15711篇
  2011年   24754篇
  2010年   16047篇
  2009年   16439篇
  2008年   20049篇
  2007年   22102篇
  2006年   13374篇
  2005年   13011篇
  2004年   12414篇
  2003年   11626篇
  2002年   10576篇
  2001年   11302篇
  2000年   8661篇
  1999年   6725篇
  1998年   5705篇
  1997年   5528篇
  1996年   5328篇
  1995年   4835篇
  1994年   4720篇
  1993年   4720篇
  1992年   5095篇
  1991年   5151篇
  1990年   4905篇
  1989年   4803篇
  1988年   4802篇
  1987年   4701篇
  1986年   4479篇
  1985年   5984篇
  1984年   6238篇
  1983年   5192篇
  1982年   5467篇
  1981年   5249篇
  1980年   5143篇
  1979年   5408篇
  1978年   5486篇
  1977年   5362篇
  1976年   5469篇
  1975年   5108篇
  1974年   5115篇
  1973年   5301篇
  1972年   3645篇
  1971年   3004篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   
52.
Camphorquinone (CQ), a widely used photoinitiator (PI) in dental applications, was covalently bonded to aromatic amines to enhance the rate of electron and proton transfer effect due to the close vicinity of the diketone and the amine group. 10‐bromocamphorquinone and 10‐bromomethylcamphorquinone were selected as suitable precursors for esterification with the carboxyl group containing aromatic amines based on 4‐dimethylaminobenzoic acid. Properties of the new photoinitiating systems were investigated by UV spectroscopy and differential scanning photocalorimetry in lauryl acrylate. Compared to physical mixtures, in all cases similar or even better performance was obtained. Surprisingly, 10‐acetyl derivatives 7 – 9 and 18 especially, were found to be highly reactive. Compared to CQ/ethyl 4‐dimethylaminobenzoate, the rate of photopolymerization was increased by a factor of up to 2. Intramolecular reaction was confirmed by photo‐differential scanning calorimetry experiments with varying PI concentrations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4948–4963, 2004  相似文献   
53.
The effective propagation rate constant (kp; averaged over all the propagating active centers) was characterized for solvent‐free cationic photopolymerizations of phenyl glycidyl ether over the entire range of conversions, including the high conversion regime in which mass transfer limitations become important. The profile for the kp as a function of conversion was found to exhibit a constant plateau value at low to intermediate conversions, followed by a monotonic increase above a threshold value of conversion. To explain this trend, it is proposed that at high conversion the diffusional mobility of the photoinitiator counterion is reduced whereas the mobility of the cationic active center remains high because of reactive diffusion. Therefore, with increasing conversion, the average distance between the active centers and counterions may increase, resulting in an increase in the propagation rate constant. The profiles for the kp values were investigated as a function of the temperature, photoinitiator anion, and photoinitiator concentration. As the photoinitiator concentration was increased, the plateau value of the effective propagation rate constant decreased whereas the threshold conversion increased. All of the experimental trends are consistent with the proposed increase in ion separation at high conversions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4409–4416, 2004  相似文献   
54.
Three‐component photoinitiators comprised of an N‐arylphthalimide, a diarylketone, and a tertiary amine were investigated for their initiation efficiency of acrylate polymerization. The use of an electron‐deficient N‐arylphthalimide resulted in a greater acrylate polymerization rate than an electron‐rich N‐arylphthalimide. Triplet energies of each N‐arylphthalimide, determined from their phosphorescence spectra, and the respective rate constants for triplet quenching by the N‐arylphthalimide derivatives (acquired via laser flash photolysis) indicated that an electron–proton transfer from an intermediate radical species to the N‐arylphthalimide (not energy transfer from triplet sensitization) is responsible for generating the initiating radicals under the conditions and species concentrations used for polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4009–4015, 2004  相似文献   
55.
The unsaturated dimer of methyl acrylate [CH2C(CO2CH3)CH2CH2CO2CH3, or MAD] was copolymerized with various monomers to prepare copolymers bearing the ω-unsaturated end group [CH2C(CO2CH3)CH2 ] arising from β fragmentation of the MAD propagating radical. Copolymerizations of MAD with cyclohexyl and n-butyl acrylate resulted in copolymers with ω-unsaturated end groups, and increasing the temperature up to 180 °C resulted in an increase in the rate of β fragmentation of MAD radicals relative to propagation. Only a small amount of unsaturated end groups was introduced by copolymerization with ethyl methacrylate (EMA), and the EMA content in the copolymer increased with temperature. These findings could be explained by the reversible addition of the poly(EMA) radical to MAD. The copolymerization with ethyl α-ethyl acrylate (EEA) did yield a copolymer containing unsaturated end groups with MAD units as part of the main chain, although the steric hindrance of the ethyl group suppressed homopropagation and crosspropagation of EEA, resulting in low polymerization rates. Therefore, the copolymerization of MAD with acrylic esters at high temperatures was noted as a convenient route for obtaining acrylate–MAD copolymers bearing unsaturated end groups at the ω end (macromonomer). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 597–607, 2004  相似文献   
56.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   
57.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   
58.
During the past three decades there has been an intense debate on the quality of health care. Errors in medicine, practice variations, competence of physicians, scarcity and lack of resources have all been reasons for discussing the quality of care. A clear definition of quality should explain the nature of the debate, improve uniformity of speech and facilitate meaningful actions such as quality assurance or quality improvement. However, in due course many different definitions have been proposed and principles of quality assurance in health care have been frequently questioned, because of their industrial nature. It raises questions on our understanding of quality in health care. In this paper, we (i) explore the nature of the quality concept, (ii) explain its meaning by Wittgenstein's theory on rule-following, and (iii) argue for understanding medical care as a reflexive practice, in order to integrate the meaning of quality in medical care.  相似文献   
59.
Two ladder‐like polysilsesquioxanes (LPS) containing side‐chain maleimide groups have been synthesized successfully by reacting N‐(4‐hydroxyphenyl)maleimide (HPM) with LPS containing 100 mol % of chloropropyl groups (Ladder A ) and 50 mol % of each methyl and chloropropyl group (Ladder B ). HPM was synthesized by reacting maleic anhydride with 4‐aminophenol, and the resulting amic acid was imidized using p‐toluenesulfonic acid as a catalyst (Scheme 1 ). The LPSs were characterized by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (NMR), proton‐decoupled 13C NMR, 29Si NMR, wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Characterization indicated that these polymers had ordered ladder‐like structures with possible defects. These polymers were soluble in common solvents at ambient temperature, which suggested that they were not crosslinked. Both the polymers and the HPM were cured, and their kinetics were followed by dynamic DSC. The Ozawa and Kissinger methods were used to calculate activation energies for curing. Curing increased the temperature at which both 5% weight loss and maximum rate of weight loss were observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4036–4046, 2004  相似文献   
60.
This article concerns the synthesis and characterization of novel tricomponent amphiphilic membranes consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) segments cocrosslinked and reinforced by octasilane polyhedral oligomeric silsesquioxane (octasilane‐POSS) cages. Rapid and efficient network synthesis was effected by cocrosslinking diallyl‐telechelic PEG (A‐PEG‐A) and divinyl‐telechelic PDMS (V‐PDMS‐V) with pentamethylpentacyclosiloxane (D5H), using Karstedt's catalyst in conjunction with Et3N cocatalyst and water. Films were prepared by pouring charges in molds and crosslinking by heating at 60 °C for several hours. The films were characterized by sol fractions and equilibrium swelling both in hexane and water, extent of crosslinking, contact angle hysteresis, oxygen permeability, thermogravimetric analysis, and mechanical properties. The crosslinking of octasilane‐POSS achieved by the same catalyst system was studied in separate experiments. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4337–4352, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号