首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   12篇
力学   1篇
数学   1篇
物理学   17篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1985年   1篇
  1965年   1篇
排序方式: 共有31条查询结果,搜索用时 62 毫秒
21.
Abstract

The GeO-Calc computer program (Brown et al., Computers & Geosciences 14 (1988) 279) has been used for evaluating the p-T phase diagram of AgI in the pressure range up to 3 GPa and the temperature range 0 to 800°C. p-T phase diagrams were calculated using available thermodynamic data and compared to experimentally determined ones. The results of these compareisons were used to check the consistency of the data and to determine unknown quantities. A consistent set of data is presented.  相似文献   
22.
Bin Zhu  B. -E. Mellander 《Ionics》1997,3(5-6):368-372
Two electrochemical methods have been used to determine the proton diffusion in solid electrolytes. One is based on transient ionic current measurements and a reasonable physical model; the other one is a quick determination using steady-state transport. The results of proton diffusion coefficients of 10−6 and 10−5 cm2/s obtained for the α- and β-phases of Li2SO4, respectively, using these two methods are in a good agreement with published results. The methods turned out to be very useful for determining proton diffusion in solid electrolytes, especially when the electrolytes contain more than one type of the mobile ionic species and a low concentration of the protons. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   
23.
Natural vein graphite with high purity and crystallinity is seldom used as anode material in lithium-ion rechargeable batteries (LIB) due to impurities and inherent surface structure. This study focuses on improving the surface properties of purified natural vein graphite surface by employing mild chemical oxidation. Needle-platy graphite sample with initial average carbon percentage of 99.83% was improved to 99.98% after treatment with 5 vol.% HCl. Surface modification of purified graphite was done by chemical oxidation with (NH4)2S2O8 and HNO3. Fourier-transform infrared spectra of graphite after chemical indicating surface oxidation of graphite surface. X-ray diffraction and scanning electron microscopic studies show the improvement of graphite structure without modification of crystalline structure. Electrochemical performance of lithium-ion cell assembled with developed anode material shows noticeable improvement of the reversible capacity and coulombic efficiency in the first cycle and cycling behavior after surface modification.  相似文献   
24.
In this study, the electrical, dielectric and morphological analysis of composite solid polymer electrolytes containing polyethylene oxide, alumina nano-fillers and tetrapropylammonium iodide are conducted. The temperature dependence of conductivity shows activation energy of 0.23, 0.20 and 0.29 eV for electrolytes containing 0, 5 and 15 wt.% alumina, respectively, when data fitted to the Arrhenius equation. These activation energy values are in good agreement with those determined from dielectric measurements. The result confirms the fact that conductivity is activated by both the mobility and the charge carrier density. The conductivity isotherms demonstrated the existence of two peaks, at 5 and 15 wt.% Al2O3 composition. The highest conductivity values of 2.4 × 10?4, 3.3 × 10?4 and 4.2 × 10?4 S cm?1 are obtained for the sample with 5 wt.% Al2O3 at 0, 12 and 24 °C, respectively, suggesting an enhancement of conductivity compared with that of alumina free samples.  相似文献   
25.
Journal of Solid State Electrochemistry - A gel electrolyte based on poly(ethylene oxide) is optimized in order to improve dye-sensitized solar cells (DSCs) by varying the contents of a binary...  相似文献   
26.
27.

Performance of dye-sensitized nano-crystalline TiO2 thin film-based photo-electrochemical solar cells (PECSCs) containing gel polymer electrolytes is largely governed by the nature of the cation in the electrolyte. Dependence of the photovoltaic performance in these quasi-solid state PECSCs on the alkaline cation size has already been investigated for single cation iodide salt-based electrolytes. The present study reports the ionic conductivity dependence on the nature of alkaline cations (counterion) in a gel polymer electrolyte based on binary iodides. Polyacrylonitrile-based gel polymer electrolyte series containing binary iodide salts is prepared using one of the alkaline iodides (LiI, NaI, KI, RbI, and CsI) and tetrapropylammonium iodide (Pr4NI). All the electrolytes based on binary salts have shown conductivity enhancement compared to their single cation counterparts. When combined with Pr4NI, each of the Li+, Na+, K+, Rb+, and Cs+ cation containing iodide salts incorporated in the gel electrolytes has shown a room temperature conductivity enhancement of 85.59, 12.03, 12.71, 20.77, and 15.36%, respectively. The conductivities of gel electrolytes containing binary iodide systems with Pr4NI and KI/RbI/CsI are higher and have shown values of 3.28, 3.43, and 3.23 mS cm−1, respectively at room temperature. The influence of the nature of counterions on the performance of quasi-solid state dye-sensitized solar cells is investigated by assembling two series of cells. All the binary cationic solar cells have shown more or less enhancements of open circuit voltage, short circuit current density, fill factor, and efficiency compared to their single cation counterparts. This work highlights the importance of employing binary cations (a large and a small) in electrolytes intended for quasi-solid state solar cells. The percentage of energy conversion efficiency enhancement shown for the PECSCs made with electrolytes containing Pr4NI along with Li+, Na+, K+, Rb+, and Cs+ iodides is 260.27, 133.65, 65.27, 25.32, and 8.36%, respectively. The highest efficiency of 4.93% is shown by the solar cell containing KI and Pr4NI. However, the highest enhancements of ionic conductivity as well as the energy conversion efficiency were exhibited by the PECSC made with Li+-containing binary cationic electrolyte.

  相似文献   
28.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   
29.
The electrical properties and proton conduction of Gd0.1Ce0.9O1.95 (10GCO) were investigated via impedance spectroscopy in different atmospheres and various gas concentration cells. In oxygen atmosphere, GCO is nearly a pure oxygen ionic conductor, while in hydrogen GCO behaves as a mixed conductor of oxygen ions, electrons and protons. Depending on the temperature, the total conductivity is usually enhanced by one to two orders of magnitude in hydrogen than in air/oxygen due to mixed conduction. By examining ionic transport properties of oxygen ions and protons using gas concentration cells we have discovered that the ionic transport properties depend largely on the gas atmospheres and change from one type to the other. Proton conduction generally exists in GCOs, and becomes significant in hydrogen atmospheres, which normally results in a contribution between 5 to 10 % of the total conductivity for 10 GCO. A maximum value of 17 % of the contribution by protons has been observed. The reduction of Ce4+ to Ce3+ of the sample in reduced atmospheres causes the formation of additional oxygen vacancies and electrons, associated also with the creation of protons. All these charge carriers are responsible for the electrical and transport properties of the investigated GCO materials. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   
30.
New advanced ceramic type fuel cells using natural salt and fluoride-based electrolytes have been demonstrated. Compared with conventional fuel cells, the natural salt and fluoride-based electrolyte fuel cells have shown a technical opportunity to develop intermediate temperature fuel cells for commercialisation in the near future. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号