首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259816篇
  免费   17862篇
  国内免费   9688篇
化学   148930篇
晶体学   3903篇
力学   12823篇
综合类   515篇
数学   29503篇
物理学   91692篇
  2022年   4155篇
  2021年   4668篇
  2020年   5295篇
  2019年   5043篇
  2018年   5165篇
  2017年   4914篇
  2016年   7722篇
  2015年   6218篇
  2014年   8381篇
  2013年   14326篇
  2012年   13813篇
  2011年   15108篇
  2010年   10447篇
  2009年   10250篇
  2008年   12177篇
  2007年   11373篇
  2006年   10713篇
  2005年   9207篇
  2004年   7934篇
  2003年   6834篇
  2002年   6508篇
  2001年   6947篇
  2000年   5419篇
  1999年   4763篇
  1998年   4037篇
  1997年   3925篇
  1996年   3765篇
  1995年   3421篇
  1994年   3222篇
  1993年   2983篇
  1992年   3147篇
  1991年   3018篇
  1990年   2828篇
  1989年   2616篇
  1988年   2483篇
  1987年   2424篇
  1986年   2341篇
  1985年   2887篇
  1984年   2833篇
  1983年   2498篇
  1982年   2588篇
  1981年   2361篇
  1980年   2326篇
  1979年   2441篇
  1978年   2463篇
  1977年   2388篇
  1976年   2437篇
  1975年   2360篇
  1974年   2328篇
  1973年   2504篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   
22.
23.
24.
25.
26.
27.
28.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
29.
30.
Recently, oral absorption of cyclic hexapeptides was improved by N‐methylation of their backbone amides. However, the number and position of N‐methylations or of solvent exposed NHs did not correlate to intestinal permeability, measured in a Caco‐2 model. In this study, we investigate enantiomeric pairs of three polar and two lipophilic peptides to demonstrate the participation of carrier‐mediated transporters. As expected, all the enantiomeric peptides exhibited identical lipophilicity (logD7.4) and passive transcellular permeability determined by the parallel artificial membrane permeability assay (PAMPA). However, the enantiomeric polar peptides exhibited different Caco‐2 permeability (Papp) in both directions a–b and b–a. The same trend was observed for one of the lipophilic peptide, whereas the second lipophilic enantiomer pair showed identical Caco‐2 permeability (within the errors). These findings provide the first evidence for the involvement of carrier‐mediated transport for peptides, especially for those of polar nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号