首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   7篇
  国内免费   4篇
化学   146篇
晶体学   1篇
力学   6篇
数学   7篇
物理学   24篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   8篇
  2019年   8篇
  2018年   10篇
  2017年   12篇
  2016年   16篇
  2015年   10篇
  2014年   9篇
  2013年   23篇
  2012年   13篇
  2011年   15篇
  2010年   9篇
  2009年   13篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  1998年   1篇
  1989年   1篇
排序方式: 共有184条查询结果,搜索用时 0 毫秒
51.
A gene encoding β-1,3-1,4-glucanase was cloned by polymerase chain reaction (PCR) from Bacillus subtilis MA139. Sequencing result showed 97% homology to the corresponding gene from Bacillus licheniformis. The open reading frame (ORF) of the gene contained 690 bp coding for a 226 amino-acid matured protein with the estimated molecular weight of 24.44 kDa. The β-1,3-1,4-glucanase gene was subcloned into an expression vector of pET28a and expressed in Escherichia coli BL21 and then purified by metal affinity chromatography using a nickel–nitrilotriacetic acid (Ni–NTA) column. The purified β-1,3-1,4-glucanase demonstrated 24.05 and 12.52 U ml-1 activities for the substrates of barley β-glucan and lichenan, respectively, and the specific activities were 728.79 and 379.1 U mg-1 for them, respectively. The optimal temperature and pH of the purified enzyme were 40°C and 6.4, respectively. When barley β-glucan was used as the substrate, K m was 5.34 mg ml-1, and K cat showed 7,206.71 S-1, thus the ratio of K cat and K m was 1,349.67 ml s-1 mg-1. The activity of β-1,3-1,4-glucanase was affected by a range of metal ions or ethylenediaminetetraacetic acid (EDTA).  相似文献   
52.
In this contribution, a novel label-free electrochemical biosensor for diclofenac (DCF) detection was developed using the unique properties of acid-oxidized carbon nanotubes (CNT), graphene oxide (GO), and Fe3O4 magnetic nanomaterials. The GO sheets and CNT were interlinked by ultrafine Fe3O4 nanoparticles forming three-dimensional (3D) architectures. The characterization of the nanocomposite was studied by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), and wavelength-dispersive X-ray (WDX) spectroscopy. Initially, aminated detection probe (aptamer) was surface-confined on the CNT/GO/Fe3O4 nanocomposite via the covalent amide bonds formed by the carboxyl groups on the CNT/GO and the amino groups on the oligonucleotides at the 5′ end. Our constructed folding-based electrochemical sensor was used for detection of target molecule utilizing structure-switching aptamers. Signaling arose from changes in electron transfer efficiency upon target-induced changes in the conformation of the aptamer probe. These changes were readily monitored using differential pulse voltammetry technique. This sensor exhibited binding affinities ranging from 100 to 1300 pM with a low detection limit of 33 pM.  相似文献   
53.
Two series of complexes of the types trans-[CoIII(Mebpb)(amine)2]ClO4 {Mebpb2− = N,N-bis(pyridine-2-carboxamido)-4-methylbenzene dianion, and amine = pyrrolidine (prldn) (1a), piperidine (pprdn) (2a), morpholine (mrpln) (3a), benzylamine (bzlan) (4a)}, and trans-[CoIII(cbpb)(amine)2]X {cbpb2− = N,N-bis(pyridine-2-carboxamido)-4-chlorobenzene dianion, and amine = pyrrolidine (prldn), X = PF6 (1b), piperidine (pprdn), X = PF6 (2b), morpholine (mrpln), X = ClO4 (3b), benzylamine (bzlan), X = PF6 (4b)} have been synthesized and characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structure of 1a has been determined by X-ray diffraction. The electrochemical behavior of these complexes, with the goal of evaluating the effect of axial ligation and equatorial substitution on the redox properties, is also reported. The reduction potential of CoIII, ranging from −0.53 V for (1a) to −0.31 V for (3a) and from −0.48 V for (1b) to −0.22 V for (3b) show a relatively good correlation with the σ-donor ability of the axial ligands. The methyl and chloro substituents of the equatorial ligand have a considerable effect on the redox potentials of the central cobalt ion and the ligand-centered redox processes.  相似文献   
54.
Thin films of a three-dimensional porous Zn(II)-based metal–organic framework, [Zn2(NH2-BDC)2(4-bpdb)] · 3DMF (TMU-17-NH2), containing azine-functionalized pores, were deposited on surfaces of silk fiber via a stepwise manner. The effect of sequential dipping steps in growth of TMU-17-NH2 has been studied. These systems depicted a decrease in the size accompanying a decrease in the sequential dipping steps. The TMU-17-NH2 has been used as matrices for the adsorption and in vitro guest delivery of methyldopa (MD).  相似文献   
55.
An efficient and simple route for the preparation of 2‐oxopyridine‐fused 1,3‐diazaheterocyclic compounds via a three component reaction is described. It involves the reaction between alkylenediamines 1 , 1,1‐bis(methylsulfanyl)‐2‐nitroethene, and alkyl prop‐2‐ynoates 2 in refluxing THF (Table). The structures were corroborated by spectroscopic (IR, 1H‐ and 13C‐NMR, and EI‐MS) and elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme).  相似文献   
56.
57.
Some metal hydrogen sulfates were used as acid catalysts in the N-acylation of different sulfonamides using carboxylic acid chlorides and anhydrides as acylating agents under both heterogeneous and solvent-free conditions. Al(HSO4)3 and Zr(HSO4)4 were found to have the highest activity and catalyze the reactions efficiently to furnish the primary N-acyl sulfonamides (RCONHSO2R′), secondary N-acylsulfonamides (RCONR″SO2R′) and bis-N-acylsulfonamnides [RCO(SO2R′)N-R″-N(SO2R′)COR] in good to high yield. The mild reaction conditions, inexpensive and low toxicity of catalysts and easy work-up procedure make this method attractive.  相似文献   
58.
Recent advances in perovskite ferroelectrics have fostered a host of exciting sensors and actuators. Defect engineering provides critical control of the performance of ferroelectric materials, especially lead-free ones. However, it remains a challenge to quantitatively study the concentration of defects due to the complexity of measurement techniques. Here, a feasible approach to analyzing the A-site defect and electron in alkali metal niobate is demonstrated. The theoretical relationships among defect concentration, conductivity, and oxygen partial pressure can be established based on the defect chemistry equilibria. The type and concentration of defects are reflected through the conductivity variation with oxygen partial pressure. As a result, the variation of defect concentration gives rise to defect-driven interfacial polarization, which further leads to distinct properties of the ceramics. e.g., abnormal dielectric behavior. Furthermore, this study also suggests a strategy to manipulate defects and charges in perovskite oxides for performance optimization.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号