首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   10篇
  国内免费   1篇
化学   159篇
晶体学   1篇
数学   2篇
物理学   17篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   12篇
  2011年   18篇
  2010年   7篇
  2009年   7篇
  2008年   12篇
  2007年   16篇
  2006年   12篇
  2005年   13篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有179条查询结果,搜索用时 484 毫秒
21.
The coiled coil trimer structure is a common motif observed in membrane fusion processes of specific fusion proteins such as the hemagglutinin glycoprotein. The HA2 subunit in the hemagglutinin changes its conformation or geometry to be favorable to membrane fusion in response to endosomal weakly acidic pH. This pH responsiveness is indispensable to an artificial polypeptide-triggered delivery system as well as the membrane fusion reaction in biology. In this study, we have constructed an AAB-type coiled coil heteroassembled system that is sensitive to weakly acidic pH. The heterotrimer is formed from two kinds of polypeptides containing an Ala or a Trp residue at a hydrophobic a position, and it was observed that the Glu residue at the other a position induced an acidic pH-dependent conformational change. On the basis of this pH-responsive coiled coil heteroassembled system, a boronic acid coupled working polypeptide for the combination of an intervesicular complex with a sugarlike compound on the surface of the target liposome, and a supporting polypeptide for the construction of a pH-responsive heterotrimer with the working polypeptide were designed and synthesized. The process of membrane fusion was characterized by lipid-mixing, inner-leaflet lipid-mixing, and content-mixing assays. The target selective vesicle fusion is clearly observed at a weakly acidic pH, where the working polypeptides form a heterotrimeric coiled coil with the supporting polypeptides in a 1:2 binding stoichiometry and the surfaces between pilot and target vesicles come into close proximity to each other.  相似文献   
22.
Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.  相似文献   
23.
A CMB monomer was polymerized on a glass plate with a surface-confined ATRP initiator containing a 2-bromoisobutyryl group. The glass plate modified with a PCMB brush was highly hydrophilic and showed a strong resistance against non-specific adsorption of proteins and cell adhesion. Upon ion beam irradiation, furthermore, the PCMB brush was ablated and a hollow space with a designed shape could be made to which HEK293 cells (from human embryonic kidney) and Hep G2 (from human hepatoma) cells non-specifically adhered, while no adhesion of these cells to the non-treated area on the brush was observed. The present results clearly indicate the usefulness of ion beam-printed patterns of anti-biofouling zwitterionic polymer brushes in the biomedical field.  相似文献   
24.
An efficient and versatile method was established for the preparation of 1,3a,6a-triazapentalenes. The 1,3a,6a-triazapentalene skeleton without an additional fused ring system was discovered to be a compact and highly fluorescent chromophore, which exhibited various interesting fluorescent properties such as a noteworthy correlation of luminescent wavelength with the Hammett σ(p) value and a strongly positive solvatofluorochromism.  相似文献   
25.
The evolution of Si 2p core-level photoemission during a structural conversion from the Si (1 1 1)– -Ag to the Si(1 1 1)– -Ag superstructures induced by Ag adatoms adsorption at 140 K was studied using synchrotron radiation. The component from the top-layer Si-trimer atoms on the former surface was found to split into two components in the latter surface. The result is discussed in terms of a relaxation in some of the Si trimers induced by Ag adatoms sitting on the nearby Ag triangles of the -Ag substrate. The intensity ratio between the split components is a key to exclude some structure models proposed so far for the phases.  相似文献   
26.
Prevention of aggregation is critical for analyzing protein structure. Non-detergent sulfobetaines (NDSBs) are known to prevent protein aggregation, but the molecular mechanisms of their anti-aggregation effect are poorly understood. To elucidate the underlying mechanisms, we analyzed the effects of dimethylethylammonium propane sulfonate (NDSB-195) on acidic fibroblast growth factor (aFGF). NDSB-195 (0.5M) increased both aggregation and denaturation temperatures of aFGF by 4 degrees C. Chemical shift perturbation analyses indicated that many affected residues were located at the junction between a beta-strand (or 3(10)-helix) and a loop, irrespective of the chemical properties of the residue. The apparent dissociation constants of the interaction ranged from 0.04 to 3M, indicating weak interactions between NDSB and protein molecules.  相似文献   
27.
Hydrogen-bond (H-bond) interaction energies in α-helices of short alanine peptides were systematically examined by precise density functional theory calculations, followed by a molecular tailoring approach. The contribution of each H-bond interaction in α-helices was estimated in detail from the entire conformation energies, and the results were compared with those in the minimal H-bond models, in which only H-bond donors and acceptors exist with the capping methyl groups. The former interaction energies were always significantly weaker than the latter energies, when the same geometries of the H-bond donors and acceptors were applied. The chemical origin of this phenomenon was investigated by analyzing the differences among the electronic structures of the local peptide backbones of the α-helices and those of the minimal H-bond models. Consequently, we found that the reduced H-bond energy originated from the depolarizations of both the H-bond donor and acceptor groups, due to the repulsive interactions with the neighboring polar peptide groups in the α-helix backbone. The classical force fields provide similar H-bond energies to those in the minimal H-bond models, which ignore the current depolarization effect, and thus they overestimate the actual H-bond energies in α-helices. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
28.
Shimalactones A and B are neuritogenic polyketides possessing characteristic oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene ring systems that are produced by the marine fungus Emericella variecolor GF10. We identified a candidate biosynthetic gene cluster and conducted heterologous expression analysis. Expression of ShmA polyketide synthase in Aspergillus oryzae resulted in the production of preshimalactone. Aspergillus oryzae and Saccharomyces cerevisiae transformants expressing ShmA and ShmB produced shimalactones A and B, thus suggesting that the double bicyclo-ring formation reactions proceed non-enzymatically from preshimalactone epoxide. DFT calculations strongly support the idea that oxabicyclo-ring formation and 8π-6π electrocyclization proceed spontaneously after opening of the preshimalactone epoxide ring through protonation. We confirmed the formation of preshimalactone epoxide in vitro, followed by its non-enzymatic conversion to shimalactones in the dark.  相似文献   
29.
Ruthenocene‐type hybrid complexes with N‐fused porphyrinato ligands, [Ru(NFp)Cp] (NFp=N‐fused porphyrin, Cp=cyclopentadienyl), have been prepared and characterized by NMR and UV/Vis/NIR spectroscopy, cyclovoltammetry, and X‐ray crystallography. [Ru(NFp)Cp] is a common low‐spin ruthenium(II) complex and shows strong aromaticity. The Ru–Cp distance (1.833 Å) in [Ru(NFp)Cp] is comparable to that in [RuCp2] (1.840 Å). DFT calculations on [Ru(NFp)Cp] showed the unequivocal contribution of the RuCp moiety as well as the NFp moiety to both the HOMO and LUMO, constructing a three‐dimensional d–π conjugated system. The HOMO–LUMO gaps of [Ru(NFp)Cp] are insensitive to the substituents on the NFp ligand, which is illustrated spectroscopically as well as theoretically. This is in sharp contrast to the ligand precursor, the N‐fused porphyrin, in which the HOMO–LUMO gap is affected by substituents in a similar manner to standard porphyrins and related macrocycles.  相似文献   
30.
In many viruses, pH-responsive coiled-coil domains in the specific fusion proteins play important roles in membrane fusion and the infection of viruses into host cells. To investigate the relationship between the conformational change of the coiled coil and the fusion process, we have introduced a de novo designed polypeptide as a model system of the coiled-coil domain. This system enables the systematic study of the dynamics of pH-responsive coiled-coil polypeptide-membrane interactions. First, we designed and synthesized pH-responsive isoleucine-zipper triple-stranded coiled-coil polypeptides. Then the relationship between the pH-induced conformational change of the polypeptide and the membrane's interactive properties was studied by physicochemical methods. Structural changes in the designed polypeptides were examined by means of circular dichroism measurements. And finally, the behavior of the membrane fusion was investigated by leakage of liposomal contents, turbidity analysis, dynamic light scattering, and lipid mixing experiments. Our data show that coiled-coil formation under acidic pH conditions enhances polypeptide-induced membrane fusion. The results in this study demonstrate that an artificial membrane fusion system can be constructed on a molecular level by the use of a pH-responsive isoleucine-zipper triple-stranded coiled-coil polypeptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号