首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   17篇
  国内免费   2篇
化学   259篇
力学   1篇
数学   12篇
物理学   17篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   9篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   10篇
  2014年   7篇
  2013年   13篇
  2012年   22篇
  2011年   26篇
  2010年   14篇
  2009年   10篇
  2008年   17篇
  2007年   34篇
  2006年   19篇
  2005年   25篇
  2004年   19篇
  2003年   11篇
  2002年   10篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有289条查询结果,搜索用时 218 毫秒
41.
Nanocrystalline CeO2 supplies reactive oxygen in the form of surface eta1 superoxide species and peroxide adspecies at the one-electron defect site to the supported active species of gold for the oxidation of CO.  相似文献   
42.
43.
The paper introduces the framework, problems addressed, objective function, types of variables and so on for a model designed to facilitate the economic evaluation of master city plans. The model presented here has been used in a pilot study of the city of Västerås, Sweden. It consists of three main parts, data, results and method. Some conclusions are drawn.  相似文献   
44.
45.
46.
The cationic complex [(JohnPhos–Au)3(acetylide)][SbF6] (JohnPhos=(2-biphenyl)di-tert-butylphosphine, L1) has been characterised structurally and features an acetylide–trigold(I)–JohnPhos system; the trinuclear–acetylide unit, coordinated to the monodentate bulk phosphines, adopts an unprecedented μ,η121 coordination mode with an additional interaction between distal phenyl rings and gold centres. Other cationic σ,π-[(gold(I)L1)2] complexes have also been isolated. The reaction of trimethylsilylacetylene with various alcohols (iPrOH, nBuOH, n-HexOH) catalysed by cationic [AuIL1][SbF6] complexes in CH2Cl2 at 50 °C led to the formation of acetaldehyde acetals with a high degree of chemo- and regioselectivity. The reaction mechanism was studied, and several organic and inorganic intermediates have been characterised. A comparative study with the analogous cationic [CuIL1][PF6] complex revealed different behaviour; the copper metal is lost from the coordination sphere leading to the formation of cationic vinylphosphonium and copper nanoparticles. Additionally, a new catalytic approach for the formation of this high-value cationic vinylphosphonium has been established.  相似文献   
47.
A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed.  相似文献   
48.
The mechanism of the oxidative [3+2] cycloaddition of alkenes with anhydrides using oxygen as an oxidant to synthesize γ-lactones has been studied using a heterogeneous dual copper-manganese–based catalyst. The cyclization takes place through two coexisting reaction mechanisms, the involvement of different reaction intermediates and a clear synergistic effect between copper and manganese. In fact it appears that CuO clusters dispersed on the surface of a manganese-based oxide increase the redox capability of manganese ions and leads to an increase in the release of oxygen from the surface.  相似文献   
49.
Tricyclic basic dyes (proflavine, acridine orange, pyronine, pyronine Y, oxonine, thionine and methylene blue) often form one‐to‐one or two‐to‐one complexes with CB[7] and CB[8], respectively. In the case of pyronine Y, the complexes with CB[7] and CB[8] have a one‐to‐one and three‐to‐one stoichiometry, respectively. The binding constants for CB[7] complexes range from 3.07×106 to 1.70×107 m ?1. In the case of CB[8], the association constant varies between 3.24×1013 and 2.50×1016 m ?2. Overall, these binding constants are four orders of magnitude higher than those reported for the same dyes in β and γ‐cyclodextrins. Formation of the host–guest complexes leads to an increase in the fluorescence quantum yields in the case of CB[7], while the dimeric or trimeric dye encapsulated in CB[8] are remarkably less fluorescent than the same dye in diluted solutions.  相似文献   
50.
This review summarizes the physical approaches towards enhancement of the photocatalytic activity of titanium dioxide by controlling this semiconductor in a certain length scale from subnanometric to submillimetric distances and provides examples in which the photocatalytic activity of TiO2 is not promoted by doping or changes in the chemical composition, but rather by application of physical concepts and spatial structuring of the semiconductor. Thus, encapsulation inside the micropores and cavities of zeolites (about 1 nm) renders small titanium oxide clusters with harnessed photocatalytic activity. On the other hand, nanometric titanium particles can be ordered forming structured periodic mesoporous materials with high specific surface area and well defined porosity. Titiania nanotubes of micrometric length, either independent or forming a membrane, also exhibit unique photocatalytic activity as consequence of the long diffusion length of charge carriers along the nanotube axis. Finally, photonic crystals with an inverse opal structure and the even more powerful concept of photonic sponges can serve to slow down visible light photons inside the material, increasing the effective optical path in such a way that light absorption near the absorption onset of the material is enhanced considerably. All these physical-based approaches have shown their potential in enhancing the photocatalytic activity of titania, paving the way for a new generation of novel structured photocatalysts in which physical and chemical concepts are combined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号