首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   2篇
  国内免费   4篇
化学   27篇
晶体学   1篇
力学   3篇
数学   31篇
物理学   17篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2012年   10篇
  2011年   5篇
  2010年   9篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
11.
This work honors the 75th birthday of Professor Ionel Michael Navon by presenting original results highlighting the computational efficiency of the adjoint sensitivity analysis methodology for function‐valued operator responses by means of an illustrative paradigm dissolver model. The dissolver model analyzed in this work has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model comprises eight active compartments in which the 16 time‐dependent nonlinear differential equations modeling the physical and chemical processes comprise 619 scalar and time‐dependent model parameters, related to the model's equation of state and inflow conditions. The most important response for the dissolver model is the time‐dependent nitric acid in the compartment furthest away from the inlet, where measurements are available at 307 time instances over the transient's duration of 10.5 h. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed efficiently by applying the adjoint sensitivity analysis methodology for operator‐valued responses. The uncertainties in the model parameters are propagated using the above‐mentioned sensitivities to compute the uncertainties in the computed responses. A predictive modeling formalism is subsequently used to combine the computational results with the experimental information measured in the compartment furthest from the inlet and then predict optimal values and uncertainties throughout the dissolver. This predictive modeling methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the model parameters and the computed and experimentally measured model responses. This approximate a priori distribution is subsequently combined using Bayes' theorem with the “likelihood” provided by the multi‐physics computational models. Finally, the posterior distribution is evaluated using the saddle‐point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi‐physics models, along with corresponding reduced uncertainties. This work shows that even though the experimental data pertains solely to the compartment furthest from the inlet (where the data were measured), the predictive modeling procedure used herein actually improves the predictions and reduces the predicted uncertainties for the entire dissolver, including the compartment furthest from the measurements, because this predictive modeling methodology combines and transmits information simultaneously over the entire phase‐space, comprising all time steps and spatial locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
12.
13.
Three new chemically crosslinked polyurethanes were synthesized. Their behaviour in organic solvents and in dynamic heating conditions was studied. Predictions regarding the thermal stability have been made by using the isoconversion kinetic method.  相似文献   
14.
15.
The need of accurate and efficient numerical schemes to solve Richards’ equation is well recognized. This study is carried out to examine the numerical performances of the nonlinear multigrid method for numerical solving of the two-dimensional Richards’ equation modeling water flow in variably saturated porous media. The numerical approach is based on an implicit, second-order accurate time discretization combined with a vertex centered finite volume method for spatial discretization. The test problems simulate infiltration of water in 2D saturated–unsaturated soils with hydraulic properties described by van Genuchten–Mualem models. The numerical results obtained are compared with those provided by the modified Picard–preconditioned conjugated gradient (Krylov subspace) approach.  相似文献   
16.
Using the expression of the fidelity for the most general Gaussian quantum states, the behaviour of the quantum fidelity is described for the states of a harmonic oscillator interacting with an environment, in particular with a thermal bath. By taking a correlated squeezed Gaussian state as initial state, we calculate the quantum fidelity for both kinds of undisplaced and displaced states, and for different values of the squeezing and correlation parameters and of the environment temperature.  相似文献   
17.
We establish the relation of the spin tomogram to the Wigner function on a discrete phase space of qubits. We use the quantizers and dequantizers of the spin tomographic star-product scheme for qubits to derive the expression for the kernel connecting Wigner symbols on the discrete phase space with the tomographic symbols.  相似文献   
18.
19.
Completely J — positive linear systems of finite order are introduced as a generalization of completely symmetric linear systems. To any completely J — positive linear system of finite order there is associated a defining measure with respect to which the transfer function has a certain integral representation. It is proved that these systems are asymptotically stable. The observability and reachability operators obey a certain duality rule and the number of negative squares of the Hankel operator is estimated. The Hankel operator is bounded if and only if a certain measure associated with the defining measure is of Carleson type. We prove that a real symmetric operator valued function which is analytic outside the unit disk has a realization with a completely J — symmetric linear space which is reachable, observable and parbalanced. Uniqueness and spectral minimality of the completely J — symmetric realizations are discussed.  相似文献   
20.
For a subspaceS of a Kreîn spaceK and an arbitrary fundamental decompositionK=K ?[+]K + ofK, we prove the index formula $$\kappa ^ - \left( \mathcal{S} \right) + \dim \left( {\mathcal{S}^ \bot \cap \mathcal{K}^ + } \right) = \kappa ^ + \left( {\mathcal{S}^ \bot } \right) + \dim \left( {\mathcal{S} \cap \mathcal{K}^ - } \right)$$ where κ±(S) stands for the positive/negative signature ofS. The difference dim(SK ?)?dim(S K +), provided it is well defined, is called the index ofS. The formula turns out to unify other known index formulac for operators or subspaces in a Kreîn space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号