首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   25篇
  国内免费   1篇
化学   292篇
晶体学   3篇
力学   3篇
数学   31篇
物理学   35篇
  2023年   4篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   16篇
  2015年   15篇
  2014年   18篇
  2013年   20篇
  2012年   43篇
  2011年   36篇
  2010年   16篇
  2009年   13篇
  2008年   19篇
  2007年   26篇
  2006年   13篇
  2005年   14篇
  2004年   19篇
  2003年   24篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有364条查询结果,搜索用时 0 毫秒
351.
This critical review focuses on the anti-cancer fight using gold nanoparticles (AuNPs) functionalized with chemotherapeutic drugs in so-called "complexes" (supramolecular assemblies) and "conjugates" (covalent assemblies) as vectors. There is a considerable body of recent literature on various tumor-imaging techniques using the surface plasmon band (SPB) and the "passive" and "active" vectorization of anti-cancer drugs. This article reviews the main concepts and the most recent literature data with emphasis on AuNP preparation, cytotoxicities and use in selective targeting of cancer cells with over-expressed receptors for diagnosis and therapy (108 references).  相似文献   
352.
The development of personalized and non‐invasive cancer therapies based on new targets combined with nanodevices is a major challenge in nanomedicine. In this work, the over‐expression of a membrane lectin, the cation‐independent mannose 6‐phosphate receptor (M6PR), was specifically demonstrated in prostate cancer cell lines and tissues. To efficiently target this lectin a mannose‐6‐phosphate analogue was synthesized in six steps and grafted onto the surface of functionalized mesoporous silica nanoparticles (MSNs). These MSNs were used for in vitro and ex vivo photodynamic therapy to treat prostate cancer cell lines and primary cell cultures prepared from patient biopsies. The results demonstrated the efficiency of M6PR targeting for prostate cancer theranostic.  相似文献   
353.
In this work, an electrochemical method based on the diazonium-coupling reaction mechanism for the immobilization of okadaic acid (OA) on screen printed carbon electrode was developed. At first, 4-carboxyphenyl film was grafted by electrochemical reduction of 4-carboxyphenyl diazonium salt, followed by terminal carboxylic group activation by N-hydroxysuccinimide (NHS), N-(3-dimethylaminopropyle)-N′-ethyle-carbodiimide hydrochloride (EDC). Hexamethyldiamine was then covalently bound by one of its terminal amine group to the activated carboxylic group. The carboxyl group of okadaic acid was activated by EDC/NHS and then conjugated to the second terminal amine group on other side of the hexamethyldiamine through amide bond formation. After immobilization of OA, an indirect competitive immunoassay format was employed to detect OA. The immunosensor obtained using this novel approach allowed detection limit of 1.44 ng/L of OA, and was also validated with certified reference mussel samples.  相似文献   
354.
The one‐step polycondensation of diamines and diboranes triggered by the in situ deprotonation of the diammonium salts and concomitant reduction of bisboronic acids leads to the assembly of polymer chains through multiple Lewis pairing in their backbone. These new polyboramines are dihydrogen reservoirs that can be used for the hydrogenation of imines and carbonyl compounds. They also display a unique dihydrogen thermal release profile that is a direct consequence of the insertion of the amine–borane linkages in the polymeric backbone.  相似文献   
355.
The electrochemical oxidation of ammonia was investigated on a Ni/Ni(OH)2 electrode prepared by potential cycling of a Ni electrode in 1 M NaClO4. It was found that oxidation of ammonia is strongly pH dependent and proceeds mainly at pH values above 7. This indicates that NH3 rather than NH4+ is oxidized on nickel electrodes. Oxidation of ammonia occurs in the potential region of Ni(II)/Ni(III) redox activity resulting in formation of a clear peak. Ni/Ni(OH)2 is not deactivated during ammonia oxidation even at high ammonia concentrations. A considerable fraction of the ammonia was oxidized to nitrate (11%), while the rest were gaseous nitrogen compounds. It is postulated that nitrogen was formed via a mechanism involving direct electron transfer from ammonia to the anode whereas the formation of nitrate involved oxygen transfer from water to an ammonia molecule.  相似文献   
356.
Mono‐ and multinuclear complexes of ruthenium and [n]cycloparaphenylene (CPP, n=5 and 6) were synthesized in excellent yields through ligand exchange of the cationic complex [(Cp)Ru(CH3CN)3](PF6) with CPP. In the multinuclear complexes, ruthenium selectively coordinated to alternate paraphenylene units to give bis‐ and tris‐coordinated Ru complexes for [5] and [6]CPPs, respectively. Single‐crystal X‐ray analysis revealed the Ru was coordinated with η6‐hapticity on the convex surface of CPP.  相似文献   
357.
The morphology and adhesive properties of waterborne films from n-butyl acrylate/methyl methacrylate/montmorillonite clay hybrid polymer latexes which were synthesized by miniemulsion polymerization in the presence of a reactive organoclay ((2-methacryloylethyl) hexadecyldimethylammonium modified montmorillonite, CMA16) were investigated. It was found by cryo-TEM analysis that the hybrid dispersions were a mixture of colloidal particles composed of a small fraction of free montmorillonite clay platelets, polymer latex particles, polymer particles to which one or more clay platelets where adhered onto its surface and a fraction of colloidal material consisted of a clay platelet with a polymer lob adhered to either side, in other words hybrid particles with a dumbbell-like morphology. The films made from these waterborne hybrid dispersions presented a homogeneous dispersion of the clay platelets and exfoliated morphology. The shear adhesion failure temperature (SAFT) and shear resistance of the hybrid latex films synthesized with CMA16 were better than those prepared with a commercial clay (Cloisite 30B), but presented a liquid-like probe-tack performance. When allyl methacrylate (AMA) was added in the formulation, SAFT and shear resistance improved, but the film had a very low energy of adhesion due to the excessively crosslinked matrix. In order to reduce crosslink density and thus improve the adhesion energy, small amounts of chain transfer agent, in this case n-dodecyl mercaptan (n-DDM), were used in the miniemulsion polymerization process. Adhesive films made from these waterborne hybrid dispersions showed excellent SAFT and shear resistance, and good energy of adhesion.   相似文献   
358.
In wastewater treatment by constructed wetland, the biodegradation capability of the biomass developed in the soil is one of the most important factors. For this kind of treatment unit, soil properties are studied to improve its filtration capacity and hydraulic residence time of the wastewater. The impact of soil properties like porosity and soil components on biomass development and biodegradation capacity seem to be less studied certainly due to the complexity of microbial identification techniques currently used. The study presented here is a preliminary work to validate that calorimetric technique could be a tool in the understanding of biodegradation capacity of wastewater treatment processes. Biofilm is preliminary developed in columns filled with different porous materials of well known porosity and constitutive components. These columns are fed with the same continuous flow of synthetic solution (C, N, and P) as a substrate amending during 3 weeks. Then each week, 2 mL samples of porous media from these columns are analyzed in isothermal calorimeter for 48 h. Net heat flow is recorded before and after substrate injection. This work results in the definition of the procedure for batch experiments in calorimeter for wastewater process efficiency. The results of these experiments show that the microbial reaction due to substrate amendment is highly depending on the porous material used for biofilm growth. Indeed calorimetric signals recorded lead to conclude that biofilm grown on plastic beads has a faster and more intensive reaction to glucose amendment than biofilm grown on glass beads. At least, two glass beads samples analyzed in the calorimeter after the same duration of feeding with synthetic solution have very different response to glucose or synthetic solution.  相似文献   
359.
N-heterocyclic carbenes catalyze the oxidation of allylic, propargylic, and benzylic alcohols to esters with manganese(IV) oxide in excellent yields. A variety of ester derivatives can be synthesized, including protected carboxylates. This one-pot tandem oxidation represents the first organocatalytic oxidation of alcohols to esters. Saturated esters can also be accessed from aldehydes using this method. Through the utilization of a chiral catalyst, the acyl-heteroazolium intermediate becomes a chiral acylating agent, which can desymmetrize meso-1,2-diols. [reaction: see text].  相似文献   
360.
N-heterocyclic carbenes derived from triazolium salts are effective catalysts between 10 and 15 mol % for the hydroacylation of activated ketones. The reducing equivalent is generated via the interaction of a nucleophilic carbene species and an aromatic aldehyde. The subsequent alcohol product can undergo an acylation event with the resulting acyl heteroazolium intermediate formed in situ between the NHC and the aldehyde. This unprecedented multiple bond-forming reaction can accommodate aromatic aldehydes as the hydride source and various electron-deficient ketones. Preliminary mechanistic evidence indicates that the reduction and acylation steps are sequential operations. The intramolecular variant of this organocatalytic reaction affords benzofuranones in good yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号