首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   83篇
化学   492篇
数学   36篇
物理学   4篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   14篇
  2019年   23篇
  2018年   13篇
  2017年   3篇
  2016年   37篇
  2015年   32篇
  2014年   17篇
  2013年   24篇
  2012年   44篇
  2011年   28篇
  2010年   19篇
  2009年   21篇
  2008年   42篇
  2007年   33篇
  2006年   31篇
  2005年   35篇
  2004年   17篇
  2003年   27篇
  2002年   8篇
  2001年   19篇
  2000年   16篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1977年   2篇
  1936年   1篇
排序方式: 共有532条查询结果,搜索用时 515 毫秒
91.
92.
A belt-shaped hexagonal cyclic porphyrin array 2 that comprises of six meso-meso, beta-beta, beta-beta triply linked diporphyrins 3 bridged by 1,3-phenylene spacers is prepared by oxidation from cyclic dodecameric array 1 consisting of six meso-meso directly linked diporphyrins 4 with DDQ and Sc(OTf)3. The absorption spectrum of 2 is similar to that of the constituent subunit 3 but shows a slight red-shift for the Q-bands in near-infrared (NIR) region, indicating the exciton coupling between the neighboring diporphyrin chromophores. Observed total exciton coupling energies in the absorption spectra were largely matched with the calculated values based on point-dipole exciton coupling approximation. It was found that the experimental exciton coupling strength (292 cm(-1)) of the Q-band in 2 is slightly larger than the calculated one (99 cm(-1)), indicating that the electronic communications are enhanced through 1,3-phenylene linkers in hexameric macromolecule. A rate of the excitation energy hopping (EEH) that occurs in 2 at the lowest excited singlet state in the near-infrared region has been determined to be (1.8 ps)(-1) on the basis of the pump-power dependent femtosecond transient absorption (TA) and the transient absorption anisotropy (TAA) decay measurements. The 2 times faster EEH rate of 2 than that of 1 (4.0 ps)(-1) mainly comes from involving through-bond energy transfer among diporphyrin subunits via 1,3-phenylene bridges as well as F?rster-type through-space EEH processes. STM measurement of 2 in the Cu(100) surface revealed that it takes several discrete conformations with respect to the relative orientation of neighboring diporphyrins. Collectively, an effective EEH in the NIR region is realized in 2 due largely to the intensified oscillator strength in the S(1) state (Q-band) and the close proximity held by 1,3-phenylene spacers.  相似文献   
93.
meso-Pentafluorophenyl- substituted [40]nonaphyrin(1.1.1.1.1.1.1.1.1) 3 has been prepared by using a stepwise ring-size-selective synthesis, and has been reduced with NaBH(4) to [42]nonaphyrin(1.1.1.1.1.1.1.1.1) 5. Structurally, 3 is characterized by a figure-of-eight shape, consisting of a porphyrin-like tetrapyrrolic segment and a hexaphyrin-like hexapyrrolic segment, whereas 5 has been found to adopt a distorted nonplanar butterfly-like shape. In the mono-metal complexes 6 and 7, a Zn(II) or Cu(II) ion is bound by the porphyrin-like tetrapyrrolic segment, maintaining the overall structure of 3. Similarly to 3, complexes 6 and 7 are interconvertible with the corresponding complexes 9 and 10 through two-electron reduction with NaBH(4) and oxidation with DDQ. The metal-free hexaphyrin-like segments of 6 and 7 have been shown to serve as a suitable platform for the complexation of two palladium ions, providing hetero-trinuclear metal complexes 11 (Zn(II)-Pd(II)-Pd(II)) and 13 (Cu(II)-Pd(II)-Pd(II)) in high yields, in which the Zn or Cu ion resides at the same porphyrin-like segment, and one Pd ion is bound in an NNCC fashion through double C--H bond activation while the other is bound in an NNC fashion with single C--H bond activation. Multi-metal complexes 11, 12, and 13 exhibit small electrochemical HOMO-LUMO gaps (<0.6 eV), despite their nonplanar conformations.  相似文献   
94.
Conformational preference and chemical stability of meso-aryl-substituted [26]hexaphyrins(1.1.1.1.1.1) ([26]ArH) depend upon meso-aryl substituents. Although only a planar and rectangular conformation (type-II conformation) has been identified for [26]ArH so far, we have demonstrated here that a different conformation with all the pyrroles pointing inward (type-I conformation) is preferred for [26]ArH (7 and 11-I) bearing small 2-thienyl or 3-thienyl substituents at 15- and 30-positions. Both type-I and type-II [26]ArH exhibit diatropic ring currents, reflecting aromatic character. Type-I [26]ArH, such as 7 and 11-I, have been shown to serve as an effective ligand for Pd(II) ions to provide bis-Pd(II) complexes 12 and 13 with N(3)C(1) coordination through facile C--H bond activation.  相似文献   
95.
Mori S  Shimizu S  Shin JY  Osuka A 《Inorganic chemistry》2007,46(11):4374-4376
Metalation of meso-hexakis(pentafluorophenyl)-substituted [26]hexaphyrin(1.1.1.1.1.1) (1) has been explored with group 12 metal ions Zn(II), Cd(II), and Hg(II). Zn(II) and Cd(II) ions afforded dinuclear gable-shaped complexes 2 and 3 in good yields, while Hg(II) ion provided bis-Hg(II) and mono-Hg(II) planar complexes (4 and 5) via C-H bond cleavage.  相似文献   
96.
97.
98.
Effective peripheral fabrication methods of meso‐aryl‐substituted subporphyrins were explored for the first time. Hexabrominated subporphyrins 2 were prepared quantitatively from the bromination of subporphyrins 1 with bromine. Hexaphenylated subporphyrins 3 and hexaethynylated subporphyrins 4 and 5 were synthesized by Suzuki–Miyaura coupling and Stille coupling, respectively, in good yields. X‐ray crystal structures of 2 b , 3 b , 4 b , and 5 a revealed preservation of the bowl‐shaped bent structures with bowl depths similar to that of 1 . Hexaethynylated subporphyrins exhibit large two‐photon‐absorption cross‐sections due to effective delocalization of the conjugated network to the ethynyl substituents.  相似文献   
99.
Expanded porphyrins : The electronic excited states of two forms of meso‐hexakis(pentafluorophenyl)‐substituted gold(III) hexaphyrin(1.1.1.1.1.1), such as that depicted, have been investigated by density functional calculations and magnetic circular dichroism spectroscopy to assign their low‐energy excited singlet states.

  相似文献   

100.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号