首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   0篇
化学   107篇
数学   16篇
物理学   70篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2013年   20篇
  2012年   11篇
  2011年   7篇
  2010年   7篇
  2009年   10篇
  2008年   6篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1973年   5篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1960年   1篇
  1942年   2篇
  1940年   1篇
  1936年   2篇
  1935年   1篇
  1931年   2篇
  1930年   2篇
  1928年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
81.
82.
A simple extension of the model of a radical pair is described in which the relative translational motion of the radicals is described by an exponential translational correlation function for departure and re-encounter. A variety of polarisations can be accounted for without invoking re-encounters, although re-encounters can be important in particular situations.  相似文献   
83.
84.
The problem of calibrating parametric sonar systems at low difference frequencies used in backscattering applications is addressed. A particular parametric sonar is considered: the Simrad TOPAS PS18 Parametric Sub-bottom Profiler. This generates difference-frequency signals in the band 0.5-6 kHz. A standard target is specified according to optimization conditions based on maximizing the target strength consistent with the target strength being independent of orientation and the target being physically manageable. The second condition is expressed as the target having an immersion weight less than 200 N. The result is a 280-mm-diam sphere of aluminum. Its target strength varies from -43.4 dB at 0.5 kHz to -20.2 dB at 6 kHz. Maximum excursions in target strength over the frequency band due to uncertainty in material properties of the sphere are of order +/-0.1 dB. Maximum excursions in target strength due to variations in mass density and sound speed of the immersion medium are larger, but can be eliminated by attention to the hydrographic conditions. The results are also applicable to the standard-target calibration of conventional sonars operating at low-kilohertz frequencies.  相似文献   
85.
86.
The title ferecrystals (fere: Latin, almost) with 1 ≤ n,m ≤ 6 and n and m varied independently are prepared by physical vapor deposition of the elements followed by annealing at 400 °C for 30 min.  相似文献   
87.
The triplet model of electron spin polarization in fluid media is evaluated. The model consists of an initial singlet molecule rotating in a static, externally applied magnetic field. Intersystem crossing into different zero-field states is represented by a rate matrix diagonal in the molecular frame, and this matrix is expressed as an effective spin operator. The triplet rotates, and the motion affects the polarization in the laboratory frame, and also causes spin relaxation in the triplet manifold. The triplet is chemically quenched, and the polarization appears in the doublet fragments. The model is treated in a density matrix formalism and on the basis of anisotropic rotational diffusion of the triplet molecule. Explicit expressions are obtained in terms of the molecular parameters, the various rate constants, and the rotational correlation time.  相似文献   
88.
CF2H groups are unique due to the combination of their lipophilic and hydrogen bonding properties. The strength of H-bonding is determined by the group to which it is appended. Several functional groups have been explored in this context including O, S, SO and SO2 to tune the intermolecular interaction. Difluoromethyl ketones are under-studied in this context, without a broadly accessible method for their preparation. Herein, we describe the development of an electrochemical hydrodefluorination of readily accessible trifluoromethylketones. The single-step reaction at deeply reductive potentials is uniquely amenable to challenging electron-rich substrates and reductively sensitive functionality. Key to this success is the use of non-protic conditions enabled by an ammonium salt that serves as a reductively stable, masked proton source. Analysis of their H-bonding has revealed difluoromethyl ketones to be potentially highly useful dual H-bond donor/acceptor moieties.

The electrochemical hydrodefluorination of trifluoromethylketones under non-protic conditions make this single-step reaction at deeply reductive potentials uniquely amenable to challenging electron-rich substrates and reductively sensitive functionalities.

The difluoromethyl group (CF2H) has attracted significant recent attention in medicinal chemistry,1,2 which complements the well-documented importance and growing use of fluorine in small molecule pharmaceuticals.3–6 The CF2H group is an H-bond donor7,8 that is also lipophilic,9,10 a unique combination that positions it as an increasingly valuable tool within drug-discovery.11 CF2H has been used as a bioisostere of OH and SH in serine and cystine moieties, respectively, as well as NH2 groups, where greater lipophilicity and rigidity provide advantages to pharmacokinetics and potency.12–14The hydrogen-bond acidity of CF2H groups is exceptionally dependent on the atom or group to which it is appended (Fig. 1A).1,2 The H-bond acidity of alkyl-CF2H groups is half that of O–CF2H and even a quarter of SO2–CF2H groups.1 This mode of control allows the H-bonding strength and, therefore its function, to be finely tuned. While much research has focused on the synthesis, behaviour and use of XCF2H groups, where X = O, S, SO, SO2, Ar, it is surprising that the corresponding carbonyl containing moiety (X = CO) has remained relatively elusive in these contexts. Not only would difluoromethyl ketones (DFMK) be expected to provide a relatively strong H-bond, but the carbonyl unit provides a complementary, yet proximal mode of intermolecular interaction (Fig. 1B). Indeed, the dual action of neighbouring H-bond donor and acceptor functionalities provides the fundamental basis for many biological systems, including in the secondary structure assembly mechanisms for proteins and DNA/RNA nucleobase pairing, as well as in enzyme/substrate complexes. Indeed, the DFMK functionality has demonstrated important utility in biological applications, including anti-malarial and -coronaviral properties.15 Finally, the carbonyl provides a useful synthetic handle for further derivatization.Open in a separate windowFig. 1H-Bonding in DFMKs and their synthesis via hydrodefluorination.While some progress has been made on the synthesis of DFMKs,16 there still remains a need for a general and more broadly accessible route to their preparation. Current strategies for DFMK preparation require multi-step processes, expensive reagents, installation of activating groups, or are inherently low yielding.15a,16–25 The hydrodefluorination of trifluoromethyl ketones (1) potentially represents the most accessible strategy, as the starting materials are most readily prepared through a high-yielding trifluoroacetylation of C–H or C–X bonds.26–29 In 2001, Prakash demonstrated the viability of this approach using 2 equivalents of magnesium metal as stoichiometric reductant to drive the defluorination, with a second hydrolysis step (HCl (3–5 M) or fluoride, overnight stirring) to reveal the product.30 The scope in this 2-step process (6 substrates) reflects the limitations of using a reductant, such as Mg, that has a fixed reduction potential, as well as incompatibilities arising from Mg/halide exchange with aryl halides. Similar limitations with the use of electron-rich substrates were revealed in related contributions from Uneyama.31In order to access more electron-rich and reductively challenging substrates, such as those containing medicinally relevant heterocycles, we postulated that electrochemical reduction could be employed (Fig. 1C). Electrosynthesis is becoming an increasingly valuable enabling technology and has seen a recent resurgence due to the precise control, unique selectivity, and the potential scalability and sustainability benefits that it offers.32–36 This strategy would avoid the undesirable use of stoichiometric metals and the ‘deep-reduction’ potentials required are readily accessed by simply selecting the applied potential. Pioneering early work from Uneyama on the cathodic formation of silylenol ether intermediate 2, suggested this approach could be viable.37,38 The fundamental challenge in designing a practical, single-step process under highly reducing potentials (<−2.0 V vs. Fc/Fc+), is to avoid the reduction of the proton source, which would otherwise compete to generate H2 gas and leave the starting material untouched. Uneyama does not demonstrate hydrodefluorination, presumably due to this problem. Additional challenges posed by ‘deep-reduction’ include a lack of tolerance for reduction-sensitive functionality (alkene, C–X bonds etc.), low mass balance due to substrate decomposition and the undesirable use of sacrificial metal anodes.39 Solving these problems should provide generally applicable, safe and scalable conditions for the hydrodefluorination of readily accessible trifluoromethyl ketones (1).Given the electron-rich nature of indoles, their ubiquity in bioactive compounds, and their ease of functionalisation, we chose indole 1a as the model substrate for optimisation. The highly reductive potentials required will render it a challenging substrate, which should lead to more general conditions suitable for other important substrate classes. Indeed, when we applied the Mg conditions of Prakash to this substrate, no silyl enol ether intermediate (2a) was observed, nor product 3a, and the starting material remained completely untouched (
EntryConditions different from aboveReductantProton source 1a a/%(2a) 3aa/%
1 Mg 0, THF, no electricity (Prakash conditions for3)Mg0100(0) n/a
2bUndivided cell, TBAPF6Sacrificial Mg anode100(0) n/a
3bPb:C (cath:an), 0 oC, 30 mA (Uneyama conditions for2)TBABr (4 eq.)33(32) 0
4bTBABr (2 eq.)(a) Acetic acid; (b) oxalic acid.51; 1000; 0
5bTBABr (2 eq.)Dimethylurea820
6bTBABr (2 eq.)TEAPF6 (4 eq.)4945
7TMSCl (0 eq.)TBABr (2 eq.)TEAPF6 (4 eq.)830
8bTMSCl (6 eq.)TBABr (2 eq.)TEAPF6 (4 eq.)4949
9c TMSCl (3 + 3 eq.) TBABr (2 eq.) TEAPF 6 (4 eq.) 0 97
10cEntry 9, but Pt:Gr (cath:An)TBABr (2 eq.)TEAPF6 (4 eq.)094
11cEntry 9, but Ni:Pt (cath:An)TBABr (2 eq.)TEAPF6 (4 eq.)083
12cEntry 9, but Stainless Steel:Pt (cath:An)TBABr (2 eq.)TEAPF6 (4 eq.)085
13cEntry 9, but Gr:Pt (cath:An)TBABr (2 eq.)TEAPF6 (4 eq.)018
Open in a separate windowa 19F NMR yields.bTMSCl only added to cathodic chamber.cTMSCl added to both cathodic and anodic chambers.The electrochemical conditions of Uneyama for preparing silylenol ethers (2) were applied to our indole 1a (entry 3). Unsurprisingly, no hydrodefluorinated product was observed, however intermediate 2a was formed in a 32% yield. In an effort to improve this yield we explored several solvents, reductants, additives and electrode materials, all of which were conducted in a divided cell at constant current and ambient temperature.40 In addition, as we were keen to develop a single-step protocol, by avoiding the second hydrolysis step that can readily form homo-coupled aldol side products,38 we surveyed a range of added proton sources for in situ delivery of 3a. The addition of carboxylic acids, such as acetic or oxalic acid (entry 4), gave no desired product, as the competing reduction of protons to H2 gas dominated. Dimethylurea was recently used as a proton source in an electrochemical ‘deep-reduction’,41 but it returned no trace of intermediate 2a or product 3a (entry 5). We hypothesized that increasing the conductivity of the system, with additional tetraalkylammonium salts (from 2 to 4 eq.), the formation of intermediate 2a may be facilitated by avoiding large cell potentials. While this change did facilitate a lower cell potential, we discovered these salts behaved as reductively stable yet competent masked proton donors: 4 eq. NEt4PF6 gave 45% yield of product 3a, with no sign of intermediate 2a (entry 6). The detection of triethylamine in solution suggests donation through a Hoffmann elimination.42 With the exception of NMe4+, other tetraalkylammonium salts were also competent proton donors (NEt4+ > NBu4+ > NPr4+).A critical improvement to the yield was observed when the use of the radical anion trapping agent, TMSCl, was optimised. With no TMSCl, 3a was not observed (entry 7), and a loading of 6 equivalents saw little improvement over 3 equivalents (entry 8 vs. 6). Experiments hitherto described were conducted with TMSCl added only to the cathodic chamber (entries 2–8). Only when the 6 equivalents was split between both chambers was a drastic improvement observed (entry 9), giving an optimised yield of 97%. Notably, the increase in conversion still occurred with only 2 F, implying that a lower steady-state concentration may be important in the cathode chamber. To test this hypothesis, TMSCl was slowly added to the catholyte by syringe-pump addition over the course of the reaction, which gave a similar yield of 94%.40 Although intermediate 2a is transient and was never observed, the importance of TMSCl to trap and stabilise reduced 1a was revealed by DFT (B3LYP/6-311+g(d)) calculations,40 which suggested a thermodynamically highly challenging reaction in its absence.The oxidation of bromide to tribromide occurs on the anode, which is an ideal counter-electrode process: not only is bromide an inexpensive and metal-free sacrificial reductant, but as the produced Br3 is anionic, it does not rapidly migrate to the cathodic chamber, preventing unwanted side reactions.43 The generated Br3 can even be used in follow-up bromination reactions.44 An increase in the applied cell potential during the reaction signifies the consumption of Br, and the oxidation of Br3 to Br2 (Fig. 2).45 Despite needing 3 equivalents of Br to form 2 equivalents of Br3 after 2 F, the loading of Br could be reduced to 2 equivalents without affecting yield. No over-reduction of 3a to the monofluoromethyl ketone was observed, which is significant considering the small difference in reduction potentials.40 This emphasises the importance of a flat chronopotentiometry trace that is achieved with Br oxidation. Other reductants were found to be sub-optimal, including diisopropylamine and oxalic acid.40Open in a separate windowFig. 2Reaction of 1a to 3a with 3 different Br concentrations.A graphite anode performed equally well as platinum for the counter electrode reaction (entry 10). Only marginally reduced yields were observed with nickel and stainless-steel cathodes (entries 11 and 12), however, a drastic decrease in the yield was observed with a graphite cathode (entry 13), possibly due to substrate grafting.39We proceeded to explore the substrate scope with our optimized conditions, Fig. 3. As expected, our electrochemical conditions were suitable for the hydrodefluorination of electron-poor acetophenone derivatives (1b, 1c). However, unlike with the use of Mg,30 substrates containing electron donating substituents are now well tolerated (1d–k). In addition, no hydrodebromination was observed for 1b, highlighting the selectivity and orthogonality granted by the use of our Mg-free, non-protic conditions. A selection of extended π-systems was tolerated, producing pyridyl 3l, biphenyl 3m, benzothiophene 3n, primary amine 3o, and pyrimidines 3p and 3q and in moderate to excellent yields. Chromoionophore dye 1r and stilbene 1s and were transformed in excellent yield, demonstrating tolerance to reductively sensitive alkenes, which would otherwise hydrogenate under protic electrochemical conditions.46 Anthracenyl 1t and naphthyl substrates 1u and 1v all transformed efficiently in good to excellent yields, the latter of which underwent direct double hydrodefluorination. 4.5% over-reduction was observed in the double defluorination product, 3v, which was the only instance where this side-product was observed in greater than 1% quantities.40 The good mass-balance and faradaic efficiency is notable considering the delocalization of charge around extended π-systems increases the likelihood of grafting.47Open in a separate windowFig. 3Isolated yields of DFMKs tested under the reaction conditions at 0.5 mmol scale. NMR yields in parentheses. aReaction run at 10 mA; breaction run in IKA Divided ProSyn: quantitative yield based on RSM; c5 mmol scale, Ni foil:Gr (cath:an); disolated as the corresponding ketone following purification on silica.49The model indole substrate 1a gave an excellent yield of DFMK at 0.5 mmol scale, which gave equally high yields when scaled up 10-fold (5 mmol), thereby demonstrating the robustness and practicality of the technique. We were also able to successfully prepare 3a in a commercially available divided cell set-up.40 Alternative groups on nitrogen, including Boc, perfluoropyridyl and benzyl (3w–y), as well as the free indole 3z, were well tolerated and gave moderate to good yields of 3. Tosyl and acetyl groups on nitrogen were less well tolerated.40 As with the acetophenones, indoles with electron donating (1aa) and withdrawing (1ab) groups proceeded to product. Methoxy demethylation of 3aa should lead to the corresponding phenol,48 which is difficult to prepare using other methodologies due to competing side-reactions. Halide substitution also successfully yielded DFMKs (3ac–ag). The inclusion of the aryl-iodide functionality is especially notable due to its facile reduction; when a silver cathode was used to convert 1ag, hydrodeiodination was observed, but which was absent under our non-protic conditions with a Pt cathode. Increased steric bulk around the reacting center in thiophenyl and phenyl-substituted substrates 1ah and 1ai had no negative influence and gave good yields of product.Heterocyclic trifluoromethylketones were successfully hydrodefluorinated under the standard conditions, including indole 3aj, carbazole 3ak, pyrrole 3al, pyridine 3am, and pyrazoles 3an and 3ao, the latter of which leads to a compound with anti-malarial activity.15a Alkyl trifluoromethylketones are more difficult to reduce compared to aromatic trifluoromethylketones, and are therefore challenging substrates to hydrodefluorinate, and impossible to convert using other methods. Nevertheless, oleyl 1ap, cyclohexyl 1aq and ethyl 1ar substrates were all amenable to the conditions, although the smaller alkyl products were cumbersome to isolate due to their volatility. The non-protic optimized conditions ensured no loss of mass-balance at these enhanced reduction potentials (|Ecell| = ca. 3.4–3.7 V for alkyl substrates vs. ca. 2.3–2.7 V for acetophenones and indoles). Finally, we tested the conditions on trifluoroacetamide 1as, thioester 1at and imines 1au and 1av. For each of these, the corresponding product was returned in moderate to good yields. Despite some complications in their isolation, these results are notable considering their difference in structure and lack of precedent. Unsuccessful substrates included a nitro-substituted indole, which was insoluble in the reaction medium, and hydrated TFMKs.40We tested a variety of substrates with the Mg-mediated conditions reported by Prakash to gauge the level of complementary between the methods.30 While acetophenone derivatives 1k and 1am were amenable to reduction with Mg, bromide substitution in 1b was unsurprisingly not tolerated with Grignard formation dominating. Indoles – 1a, 1ai, pyrazole – 1an, alkyl – 1aq, 1ar and anilide – 1as based trifluoromethylketones were untouched by Mg in all cases, with starting materials recovered only.To explore the value of the DFMK moiety in synthesis, we derivatized it in a variety of ways, Fig. 4. Resubjecting the product 3a to our non-protic hydrodefluorination conditions led to monofluorinated product 4, providing an alternative to the use of electrophilic fluorine sources.50 Reduction of the ketone in 3ae to the methyl ether and alcohol successfully gave products, 5 and 6, respectively. The dithiane of 3a, which is a useful synthetic intermediate, was formed in excellent yield (7). A Corey–Chaykovsky methenylation gave epoxide 8 in good yield. A Horner–Wadsworth–Emmons reaction transformed the carbonyl to give alkene 9. Nucleophilic attack of the ketone was demonstrated with a trifluoromethylation reaction to give highly fluorinated alcohol 10. Orthogonal reactivity was also demonstrated with a Suzuki–Miyaura cross-coupling that gave biaryl 11. Interestingly, deuterium was not exchanged into 3a when stirred in a mixture of D2O and MeCN, providing evidence for a less favourable enolization.Open in a separate windowFig. 4[A] Derivatization of DFMKs. X = H (3a) for 4, 7, and 8, X = Br (3ae) for others; [B] H-bond strength (A-value) correlated to σm Hammett parameter; [C] intermolecular H-bond revealed in X-ray crystal structure of 3ae; [D] DFT calculated (B3LYP/6-311+g(d)) relative energies of conformers with rotation around HC–CO bond. Brown arrows indicate direction of dipole.The H-bond strength (A-value) was measured for a series of phenyl substituted X–CF2H derivatives using the NMR method from Abraham, Fig. 4B.51–53 These experiments confirmed the sensitivity of the H-bonding ability to the identity of X. DFMK 3g and sulfoxide–CF2H were found to be comparable H-bond donors, which were only marginally less than the sulfone–CF2H. The H-bond strength correlated best with the σm parameter, reflecting the strong influence of inductive effects. Multiple regression analysis showed that any contribution of σp was statistically insignificant (P value = 0.33).Analysis of the X-ray crystal structure of 3ae, showed an inter-molecular H-bond between the CF2H and a carbonyl from a neighbouring molecule (Fig. 4C). DFT was used to calculate the relative conformer energy with rotation about the (O)C–CF2H dihedral bond (Fig. 4D). The lowest energy conformer eclipsed the H with the carbonyl, implying the possibility of an energy lowering intra-molecular H-bond. However, analysis of the other derivatives in the set (C(O)CH3, C(O)CFH2 and C(O)CF3) revealed that the alignment of dipoles was the dominant effect (brown arrows, Fig. 4D).40 The absence of an unusually low or even negative A-value also provides evidence against an intramolecular H-bond.51 Interestingly, in the solid-state structure (Fig. 4C), the highest energy conformer (with dipoles aligned) is adopted, highlighting the stronger propensity of this moiety to engage in H-bonding interactions.In conclusion, we have developed a mono-selective hydrodefluorination to access a broad scope of DFMKs, enabled by non-protic electrochemical conditions at deeply reducing potentials. These moieties have been studied and diversified and reveal themselves to be potentially useful dual H-bond donor/acceptor moieties. This is especially interesting considering the structurally related trifluoromethylketones are known reversible protease inhibitors;54,55 thus, the additional H-bonding moiety could enhance interaction within enzymatic active sites.15  相似文献   
89.
Anion Complexation and Transport by Isophthalamide and Dipicolinamide Derivatives: DNA Plasmid Transformation in E. coli     
JL Atkins  MB Patel  MM Daschbach  JW Meisel  GW Gokel 《Journal of the American Chemical Society》2012,134(33):13546-13549
Tris-arenes based on either isophthalic acid or 2,6-dipicolinic acid have been known for more than a decade to bind anions. Recent studies have also demonstrated their ability to transport various ions through membranes. In this report, we demonstrate two important properties of these simple diamides. First, they transport plasmid DNA into Escherichia coli about 2-fold over controls, where the ampicillin resistance gene is expressed in the bacteria. These studies were done with plasmid DNA (~2.6 kilobase (kb)) in JM109 E. coli cells. Second, known methods do not typically transport large plasmids (>15 kb). We demonstrate here that transformation of large pVIB plasmids (i.e., >20 kb) were enhanced over water controls by ~10-fold. These results are in striking contrast to the normal decrease in transformation with increasing plasmid size.  相似文献   
90.
The FT-IR study of the brain tissue of Labeo rohita due to arsenic intoxication     
PL.RM. Palaniappan  V. Vijayasundaram 《Microchemical Journal》2009,91(1):118-124
The brain is believed to be particularly vulnerable to arsenic due to its high oxygen consumption rate and high level of polyunsaturated fatty acids and relatively high rate of oxygen free radical generate without commensurable level of arsenic. Hence, in the present work an attempt is made to study the changes in the biochemical contents in the brain tissues of edible fish Labeo rohita due to arsenic intoxication using Fourier Transform Infrared (FT-IR) spectroscopy. FT-IR spectra reveal significant differences in absorbance intensities between the control and arsenic intoxicated brain tissues, reflecting an alteration on the major biochemical constituents, such as lipids, proteins and nucleic acids of the brain tissues of L. rohita due to arsenic intoxication. Further, the administration of antidote DMSA improves the protein and lipid contents significantly in the brain tissues when compared to arsenic intoxicated tissues. The decrease in α-helix structure due to arsenic intoxication might be responsible for the increase in β-sheet secondary structures, which is consistent with the mechanism of β-sheet formation.  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号