首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2970篇
  免费   45篇
  国内免费   10篇
化学   1791篇
晶体学   69篇
力学   98篇
数学   281篇
物理学   786篇
  2023年   17篇
  2022年   28篇
  2020年   23篇
  2019年   37篇
  2018年   30篇
  2017年   31篇
  2016年   65篇
  2015年   43篇
  2014年   68篇
  2013年   162篇
  2012年   134篇
  2011年   223篇
  2010年   148篇
  2009年   137篇
  2008年   164篇
  2007年   205篇
  2006年   157篇
  2005年   135篇
  2004年   109篇
  2003年   104篇
  2002年   74篇
  2001年   32篇
  2000年   39篇
  1999年   40篇
  1998年   30篇
  1997年   32篇
  1996年   31篇
  1995年   30篇
  1994年   25篇
  1993年   28篇
  1992年   31篇
  1991年   22篇
  1990年   31篇
  1989年   21篇
  1988年   17篇
  1987年   28篇
  1986年   31篇
  1985年   31篇
  1984年   26篇
  1983年   19篇
  1982年   31篇
  1981年   40篇
  1980年   22篇
  1979年   34篇
  1978年   27篇
  1976年   22篇
  1975年   21篇
  1974年   19篇
  1973年   20篇
  1972年   18篇
排序方式: 共有3025条查询结果,搜索用时 31 毫秒
791.
Second harmonic generation (SHG) imaging using near infrared laser light is the key to improving penetration depths, leading to biological understanding. Unfortunately, currently SHG imaging techniques have limited capability due to the poor signal‐to‐noise ratio, resulting from the low SHG efficiency of available dyes. Targeted tumor imaging over nontargeted tissues is also a challenge that needs to be overcome. Driven by this need, in this study, the development of two‐photon SHG imaging of live cancer cell lines selectively by enhancement of the nonlinear optical response of gold nanocage assemblies is reported. Experimental results show that two‐photon scattering intensity can be increased by few orders of magnitude by just developing nanoparticle self‐assembly. Theoretical modeling indicates that the field enhancement values for the nanocage assemblies can explain, in part, the enhanced nonlinear optical properties. Our experimental data also show that A9 RNA aptamer conjugated gold nanocage assemblies can be used for targeted SHG imaging of the LNCaP prostate cancer cell line. Experimental results with the HaCaT normal skin cell lines show that bioconjugated nanocage‐based assemblies demonstrate SHG imaging that is highly selective and will be able to distinguish targeted cancer cell lines from other nontargeted cell types. After optimization, this reported SHG imaging assay could have considerable application for biology.  相似文献   
792.
A thermogravimetric study of the alunites of sodium, potassium and ammonium   总被引:1,自引:0,他引:1  
Thermogravimetry in tandem with mass spectrometry has been used to characterise the thermal decomposition of synthetic alunites of potassium, sodium and ammonium. Three mechanisms of decomposition are observed (a) dehydration, (b) dehydroxylation and (c) desulphation. The thermal decomposition of the three alunites is different. For NH4-alunite, an additional process of de-ammoniation is observed which occurs simultaneously with dehydration. Dehydroxylation takes place in a series of four steps. De-sulphation occurs for K-alunite at 680 °C in a single step in comparison with Na and NH4 alunites where de-sulphation is observed in a series of four steps. The temperature of desulphation is cation dependent. The thermal decomposition is not completed until around 800 °C.  相似文献   
793.
There are several stages of the LC-SPE-NMR process that should be monitored closely to ensure an efficient isolation and concentration of the target analyte, for instance analyte break-through and compound transfer from the LC-SPE to the NMR probe. In this study, analyte break-through monitoring was performed with a UV detector and a mass spectrometer placed after the SPE unit. Easy break-through was a problem when attempting multiple trapping of various compounds using C18 SPE cartridges with the original commercial system. However, on lowering the flow rate over the SPE system and using SPE cartridges packed with porous carbon, the number of trappings possible increased five-fold. To increase control over the on-line SPE-NMR transfer, a gradient pump-UV system was used to elute compounds trapped on an SPE to an NMR probe. The analyte band was placed in the active volume of the probe by a stop-flow mechanism. The modified LC-SPE system was also coupled with off-line NMR analysis for determination of a degradation product of the insecticide monuron, present in the low ppm range.  相似文献   
794.
Weight change behavior of fiber-reinforced polymer composites in humid and thermal environments appears to be a complex phenomena. The state of fiber/matrix interface is believed to influence the nature of diffusion modes. A significant weakening often appears at the interface during the hygrothermal ageing. It effects the moisture uptake kinetics and also the reduction of mechanical properties. The importance of temperature at the time of conditioning plays an important role in environmental degradation of such composite materials. An attempt has been made here to evaluate the deleterious effect of temperature on shear strength of carbon/epoxy and glass/epoxy composites during hygrothermal conditionings. Mechanical tests were conducted at room temperature to assess the effectiveness of the relaxation process in the nullification of environmentally-induced damage in the composites.  相似文献   
795.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   
796.
In methanol, the reaction of Cu(ClO(4))(2).6H(2)O and a sterically constrained piperazine imine phenol ligand (H(2)L), in the presence of NEt(3), affords a novel tetranuclear copper(II) complex of formula [Cu(II)(4)(mu(3)-L)(2)(mu-OH)(2)(H(2)O)(2)](ClO(4))(2).H(2)O (1). The X-ray structure of this complex shows an elongated Cu(4) quasi-tetrahedron coordinated to two hexadentate chair-(e,a)-mu(3)-piperazine bridging ligands. Variable-temperature magnetic studies show an S(t) = 0 spin ground state resulting from antiferromagnetic interactions between Cu(II) ions within the complex.  相似文献   
797.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   
798.
Solid solutions in the series (1−x)Ta2O5xTiO2 with x=0.0-0.1 were prepared by high-temperature ceramic processing methods, and the crystal structure was determined at room temperature by transmission electron microscopy, electron diffraction and high-resolution lattice imaging. A structural model is proposed for the oxygen-deficient tantalum oxide (Ta2O5) phase with high TiO2 doping level (x=0.08). The model is based on edge sharing of an oxygen octahedron-hexagonal bi-pyramid-octahedron molecular building block unit that repeats four times per unit cell. Electron diffraction reveals a monoclinic distortion from a pseudo-tetragonal model structure that is modulated primarily along 〈110〉. The modulation length varies with increasing TiO2 content. Furthermore, by quantitative HREM analysis and matching of lattice images by simulation, it is shown that the modulation is associated with small ionic displacements in specific lattice planes that coincide with Ta ions in the model structure coordinated by oxygen hexagonal bi-pyramids. Based on this evidence, it is suggested that the modulation comes from a replacement of Ta with Ti ions, and the loss of inversion symmetry in the modulated structure is related to the dielectric properties of the material.  相似文献   
799.
Homogeneous catalysis by palladium complexes with phosphorus(III) ligands of the carbonylation of o-xylylene dihalides in the presence of water to form 3-isochromanone has been studied. Triphenylphosphine was found to provide the most effective catalyst, and by-products and intermediates of systems containing this ligand have been investigated. 2-Indanone is one by-product but is unstable to decomposition under catalytic conditions. Excess PPh3 is necessary to prolong activity of the catalyst but is also transformed to bis-phosphonium compound [o-C6H4(CH2PPh3)2]X2 (X = Cl or Br); this quaternization has been investigated and the structure of the bromide salt determined by X-ray diffraction. An unstable oxidative addition product of Pd(PPh3)4 was detected as a probable intermediate and related to the previously reported but catalytically-inactive complex trans-Pd(o-CH2C6H4CH2Cl)Cl(PMe3)2, which has been structurally characterized by X-ray diffraction in this work.  相似文献   
800.
Copper(II) complexes of general formula, Cu(NNS)X 2 · nH2O (NNS = the 2-formylpyridine Schiff base of N-methyl-S-methyldithiocarbazate; X = Cl, Br, I, NCS; n = 0, 2) have been synthesized and characterized by elemental analysis and by magnetic and spectroscopic techniques. Based on magnetic and spectroscopic data, a monomeric five-coordinate square-pyramidal structure is assigned to these complexes. The crystal and molecular structure of [Cu(NNS)I2] has been determined by X-ray diffraction. The complex has a monomeric square-pyramidal structure with the ligand coordinated to the copper(II) ion via the pyridine nitrogen atom, the azomethine nitrogen atom and the thione sulfur atom. The fourth and fifth coordination sites are occupied by the iodide ligands. Antimicrobial tests indicate that Schiff base is inactive against the bacteria, Bacillus subtilis (mutant defective DNA repair), Pseudomonas aeruginosa, methicillin resistant Staphylococcus aureus and Bacillus subtilis (wild type) and weakly active against the fungi, Candida albicans, Candida lypolytica, Saccharomyces cereviseae and Aspergillus ochraceous but its copper(II) complexes, Cu(NNS)X 2 are strongly active against these organisms. A cytotoxicity study of the compounds against leukemic and cervical cancer cells showed that the Schiff base is inactive, but the complexes, [Cu(NNS)I2] and [Cu(NNS)(NCS)2] · 2H2O exhibit significant activity against cervical cancer cells with CD50 values of 4.8 and 4.2 g, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号