首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   3篇
  国内免费   1篇
化学   47篇
晶体学   1篇
力学   15篇
数学   27篇
物理学   32篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   10篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
81.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   
82.
For maps equivariant under the action of a finite group on n, the possible symmetries of fixed points are known and correspond to the isotropy subgroups. This paper investigates the possible symmetries of arbitrary, possibly chaotic, attractors and finds that the necessary conditions of Melbourne, Dellnitz & Golubitsky [15] are sufficient, at least for continuous maps.This result shows that the reflection hyperplanes are important in determining those groups which are admissible; more precisely, a subgroup of is admissible as the symmetry group of an attractor if there exists a with / cyclic such that fixes a connected component of the complement of the set of reflection hyperplanes of reflections in but not in . For finite reflection groups this condition on reduces to the condition that is an isotropy subgroup. Our results are illustrated for finite subgroups of O(3).  相似文献   
83.
84.
This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.  相似文献   
85.
Summary We consider the dynamics of arrays ofN-series coupled Josephson junctions, under pure resistive and capacitive loads. In the limit of the junction capacitance becoming large, we prove the existence of semirotor solutions. These are periodic solutions in which the phase difference across the gap ink of the junctions oscillates with small amplitude while the remainingN—k phase differences increase by 2π radians per period. We investigate the stability of these solutions and report observations of chaotic behavior associated with these solutions.  相似文献   
86.
In this paper, we consider a lot-sizing problem with the remanufacturing option under parameter uncertainties imposed on demands and returns. Remanufacturing has recently been a fast growing area of interest for many researchers due to increasing awareness on reducing waste in production environments, and in particular studies involving remanufacturing and parameter uncertainties simultaneously are very scarce in the literature. We first present a min-max decomposition approach for this problem, where decision maker’s problem and adversarial problem are treated iteratively. Then, we propose two novel extended reformulations for the decision maker’s problem, addressing some of the computational challenges. An original aspect of the reformulations is that they are applied only to the latest scenario added to the decision maker’s problem. Then, we present an extensive computational analysis, which provides a detailed comparison of the three formulations and evaluates the impact of key problem parameters. We conclude that the proposed extended reformulations outperform the standard formulation for a majority of the instances. We also provide insights on the impact of the problem parameters on the computational performance.  相似文献   
87.
88.
In the presence of symmetries or invariant subspaces, attractors in dynamical systems can become very complicated, owing to the interaction with the invariant subspaces. This gives rise to a number of new phenomena, including that of robust attractors showing chaotic itinerancy. At the simplest level this is an attracting heteroclinic cycle between equilibria, but cycles between more general invariant sets are also possible. In this paper we introduce and discuss an instructive example of an ordinary differential equation where one can observe and analyze robust cycling behavior. By design, we can show that there is a robust cycle between invariant sets that may be chaotic saddles (whose internal dynamics correspond to a R?ssler system), and/or saddle equilibria. For this model, we distinguish between cycling that includes phase resetting connections (where there is only one connecting trajectory) and more general non(phase) resetting cases, where there may be an infinite number (even a continuum) of connections. In the nonresetting case there is a question of connection selection: which connections are observed for typical attracted trajectories? We discuss the instability of this cycling to resonances of Lyapunov exponents and relate this to a conjecture that phase resetting cycles typically lead to stable periodic orbits at instability, whereas more general cases may give rise to "stuck on" cycling. Finally, we discuss how the presence of positive Lyapunov exponents of the chaotic saddle mean that we need to be very careful in interpreting numerical simulations where the return times become long; this can critically influence the simulation of phase resetting and connection selection.  相似文献   
89.
Summary We present a framework for analysing arbitrary networks of identical dissipative oscillators assuming weak coupling. Using the symmetry of the network, we find dynamically invariant regions in the phase space existing purely by virtue of their spatio-temporal symmetry (the temporal symmetry corresponds to phase shifts). We focus on arrays which are symmetric under all permutations of the oscillators (this arises with global coupling) and also on rings of oscillators with both directed and bidirectional coupling. For these examples, we classify all spatio-temporal symmetries, including limit cycle solutions such as in-phase oscillation and those involving phase shifts. We also show the existence of “submaximal” limit cycle solutions under generic conditions. The canonical invariant region of the phase space is defined and used to investigate the dynamics. We discuss how the limit cycles lose and gain stability, and how symmetry can give rise to structurally stable heteroclinic cycles, a phenomenon not generically found in systems without symmetry. We also investigate how certain types of coupling (including linear coupling between oscillators with symmetric waveforms) can give rise to degenerate behaviour, where the oscillators decouple into smaller groups.  相似文献   
90.
The dilational rheological behavior of gelatin molecules adsorbed at the air-water interface has been studied as a function of sodium dodecyl sulfate (SDS) concentration for a 7 wt % gelatin-SDS solution at 40 degrees C. Binding of SDS molecules to the gelatin strands disrupts the cross-linked network structure of adsorbed gelatin molecules and results in a reduction of the surface elastic modulus of the adsorbed layer that continues until the bulk SDS concentration reaches 1 mM. Beyond this SDS concentration, the dilational rheological properties of the adsorbed gelatin layer are indistinguishable from those of pure SDS adsorbed layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号