首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1395篇
  免费   42篇
  国内免费   8篇
化学   796篇
晶体学   9篇
力学   64篇
数学   87篇
物理学   489篇
  2023年   23篇
  2022年   26篇
  2021年   49篇
  2020年   39篇
  2019年   37篇
  2018年   36篇
  2017年   35篇
  2016年   47篇
  2015年   36篇
  2014年   48篇
  2013年   114篇
  2012年   95篇
  2011年   121篇
  2010年   56篇
  2009年   46篇
  2008年   71篇
  2007年   69篇
  2006年   71篇
  2005年   55篇
  2004年   39篇
  2003年   35篇
  2002年   29篇
  2001年   17篇
  2000年   14篇
  1999年   9篇
  1998年   13篇
  1997年   15篇
  1996年   21篇
  1995年   18篇
  1994年   16篇
  1993年   9篇
  1992年   15篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   6篇
  1987年   2篇
  1986年   8篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   9篇
  1978年   8篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1969年   2篇
排序方式: 共有1445条查询结果,搜索用时 15 毫秒
981.
Among the conglomeration of hydrogen bond donors, the C−H group is prevalent in chemistry and biology. In the present work, CHCl3 has been selected as the hydrogen bond donor and are X(CH3)2 are the hydrogen bond acceptors. Formation of C−H⋅⋅⋅X hydrogen bond under the matrix isolation condition is confirmed by the observation of red-shift in the C−H stretching frequency of CHCl3 and comparison with the simulated spectra. Stabilisation energy of all the three complexes is almost equal although the observed red-shift for the C−H⋅⋅⋅O complex is less compared to the C−H⋅⋅⋅S/Se complexes. The nature and origin of the hydrogen bond have been delineated using Natural Bond Orbital, Atoms in Molecules, Non-Covalent Interaction analyses, and Energy Decomposition Analysis. Charge transfer is found to be proportional to the observed red-shift. This work provides the first impression of C−H⋅⋅⋅Se hydrogen bond and its comparison with C−H⋅⋅⋅O/S hydrogen bond interaction under experimental condition.  相似文献   
982.
Supramolecular assembly of biomolecules/macromolecules stems from the desire to mimic complex biological structures and functions of living organisms. While DNA nanotechnology is already in an advanced stage, protein assembly is still in its infancy as it is a significantly difficult task due to their large molecular weight, conformational complexity and structural instability towards variation in temperature, pH or ionic strength. This article reports highly stable redox-responsive supramolecular assembly of a protein Bovine serum albumin (BSA) which is functionalized with a supramolecular structure directing unit (SSDU). The SSDU consists of a benzamide functionalized naphthalene-diimide (NDI) chromophore which is attached with the protein by a bio-reducible disulfide linker. The SSDU attached protein (NDI-BSA) exhibits spontaneous supramolecular assembly in water by off-set π-stacking among the NDI chromophores, leading to the formation of spherical nanoparticles (diameter: 150–200 nm). The same SSDU when connected with a small hydrophilic wedge (NDI-1) instead of the large globular protein, exhibits a different π-stacking mode with relatively less longitudinal displacement which results in a fibrillar network and hydrogelation. Supramolecular co-assembly of NDI-BSA and NDI-1 (3 : 7) produces similar π-stacking and an entangled 1D morphology. Both the spherical assembly of NDI-BSA or the fibrillar co-assembly of NDI-BSA + NDI-1 (3 : 7) provide sufficient thermal stability to the protein as its thermal denaturation could be completely surpassed while the secondary structure remained intact. However, the esterase like activity of the protein reduced significantly as a result of such supramolecular assembly indicating limited access by the substrate to the active site of the enzyme located in the confined environment. In the presence of glutathione (GSH), a biologically important tri-peptide, due to the cleavage of the disulfide bond, the protein became free and was released, resulting in fully regaining its enzymatic activity. Such supramolecular assembly provided excellent protection to the protein against enzymatic hydrolysis as the relative hydrolysis was estimated to be <30% for the co-assembled protein with respect to the free protein under identical conditions. Similar to bioactivity, the enzymatic hydrolysis also became prominent after GSH-treatment, confirming that the lack of hydrolysis in the supramolecularly assembled state is indeed related to the confinement of the protein in the nanostructure assembly.

Supramolecular structure directing unit regulated co-assembly of a protein produces a highly stable fibrillar nanostructure and glutathione responsive release of the protein in its active state.  相似文献   
983.
The effects of pressure on translational and rotational diffusion in liquid ammonia are investigated by means of molecular dynamics simulations. Calculations are done at two different temperatures and at many different pressures by using a two-part protocol involving molecular dynamics in isobaric-isothermal ensemble in the first part and in microcanonical ensemble in the second part. Our results are analyzed in terms of pressure-induced changes in structural properties such as packing and hydrogen bond properties. Also, the present results of liquid ammonia are compared with corresponding results for other hydrogen bonded liquids that were reported in recent years.   相似文献   
984.
Conjugated dendrons based on triphenylene building blocks have been synthesized. Such dendrons exhibit broader absorption wavelength range and higher absorption coefficients than their phenyl analogs. They also possess extended excited state lifetimes and high fluorescence quantum yields in dilute solutions. In the solid state, these dendrons are highly aggregated, resulting in significantly broadened and red-shifted emissions, whose decay transients depend strongly on the detection wavelength.  相似文献   
985.
We explain the notion of minimality for an equivariant spectral triple and show that the triple for the quantumSU (2) group constructed by Chakraborty and Pal in [2] is minimal. We also give a decomposition of the spectral triple constructed by Dabrowskiet al [8] in terms of the minimal triple constructed in [2]. Dedicated to Prof. Kalyan Sinha on his sixtieth birthday  相似文献   
986.
It is important to minimize the area of a drawing of a graph, so that the drawing can fit in a small drawing-space. It is well-known that a planar graph with n vertices admits a planar straight-line grid drawing with O(n2) area [H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid, Combinatorica 10(1) (1990) 41-51; W. Schnyder, Embedding planar graphs on the grid, in: Proceedings of the First ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 138-148]. Unfortunately, there is a matching lower-bound of Ω(n2) on the area-requirements of the planar straight-line grid drawings of certain planar graphs. Hence, it is important to investigate important categories of planar graphs to determine if they admit planar straight-line grid drawings with o(n2) area.In this paper, we investigate an important category of planar graphs, namely, outerplanar graphs. We show that an outerplanar graph G with degree d admits a planar straight-line grid drawing with area O(dn1.48) in O(n) time. This implies that if d=o(n0.52), then G can be drawn in this manner in o(n2) area.  相似文献   
987.
Rapid thermal oxidation of high-Ge content (Ge-rich) Si1−xGex (x = 0.85) layers in dry O2 ambient has been investigated. High-resolution X-ray diffraction (HRXRD) and strain-sensitive two-dimensional reciprocal space mapping X-ray diffractometry (2D-RSM) are employed to investigate strain relaxation and composition of as-grown SiGe alloy layers. Characterizations of ultra thin oxides (∼6-8 nm) have been performed using Fourier transform infrared spectroscopy (FTIR) and high-resolution X-ray photoelectron spectroscopy (HRXPS). Formation of mixed oxide i.e., (SiO2 + GeO2) and pile-up of Ge at the oxide/Si1−xGex interface have been observed. Enhancement in Ge segregation and reduction of oxide thickness with increasing oxidation temperature are reported. Interface properties and leakage current behavior of the rapid thermal oxides have been studied by capacitance-voltage (C-V) and current-voltage (J-V) techniques using metal-oxide-semiconductor capacitor (MOSCAP) structures and the results are reported.  相似文献   
988.
989.
990.
The quantum domain behavior of classical nonintegrable systems is well‐understood by the implementation of quantum fluid dynamics and quantum theory of motion. These approaches properly explain the quantum analogs of the classical Kolmogorov–Arnold–Moser type transitions from regular to chaotic domain in different anharmonic oscillators. Field‐induced tunneling and chaotic ionization in Rydberg atoms are also analyzed with the help of these theories. Quantum fluid density functional theory may be used to understand different time‐dependent processes like ion‐atom/molecule collisions, atom‐field interactions, and so forth. Regioselectivity as well as confined atomic/molecular systems and their reactivity dynamics have also been explained. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号