首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   5篇
化学   112篇
晶体学   2篇
力学   1篇
数学   5篇
物理学   21篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2011年   17篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1966年   2篇
  1965年   3篇
  1964年   1篇
  1963年   1篇
  1962年   2篇
  1961年   2篇
  1959年   2篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
131.
The bandwidth (FWHM) of the anisotropic component (Gamma(aniso)) of methyl isobutyl ketone (MIBK) for different concentrations of solvents varying from 10 to 90% was measured and was plotted as a function of solvent concentrations. In lower solvent concentration, the graph shows a curvature with a discontinuity which occurs between 40 and 60% and in higher solvent concentration, the graph shows a straight line for most of the solvents. In order to interpret the complicated behaviour we have taken into accounts the van der Waals' volume (V(w)) of the sphere of influence in solute dissolved in all solvents. Considering the role of van der Waals' volume in these systems the parameter Gamma(omega)=ln(Gamma(aniso)/V(w)) was plotted at different solvent concentrations. The graph shows a straight line for the entire region. In order to study the influence of screening effect on the bandwidth, the capacitances of the liquid mixture at different solvent concentrations varying from 10 to 90% were measured for all the solvents. The plot of capacitance at different solvent concentrations for each solvent shows a discontinuity around 50% of solvent concentration.  相似文献   
132.
133.
This paper uses the Beam Propagation Method to investigate numerically the switching behavior of a Nonlinear Mach-Zehnder Interferometer (NMZI). A saturating-type nonlinearity has been considered for the present investigations. It is shown that the input versus output characteristics change drastically when a Kerr type nonlinear medium is replaced by a saturating type nonlinear medium. In contrast to an NMZI with Kerr nonlinearity, where only quantitative behavior changes with NMZI length, quantitative as well as qualitative behaviors change in the case of a saturating nonlinearity. We propose an all-optical stabilizer and MZI with stable “ON” and “OFF” states on the basis of our investigation.  相似文献   
134.
The current study deciphers the combined ligand- and structure-based computational insights to profile structural determinants for the selectivity of representative diverse classes of FXa-selective and thrombin-selective as well as dual FXa-thrombin high affinity inhibitors. The thrombin-exclusive insertion 60-loop (D-pocket) was observed to be one of the most notable recognition sites for the known thrombin-selective inhibitors. Based on the topological comparison of four common active-site pockets (S1-S4) of FXa and thrombin, the greater structural disparity was observed in the S4-pocket, which was more symmetrical (U-shaped) in FXa as compared to thrombin mainly due to the presence of L99 and I174 residues in latter in place of Y99 and F174 respectively in former protease. The S2 pocket forming partial roof at the entry of 12 ? deep S1-pocket, with two extended β-sheets running antiparallel to each other by undergoing U-turn (~180?), has two conserved glycine residues forming H-bonds with the bound ligand for governing ligand binding affinity. The docking, scoring, and binding pose comparison of the representative high-affinity and selective inhibitors into the active sites of FXa and thrombin revealed critical residues (S214, Y99, W60D) mediating selectivity through direct- and long-range electrostatic interactions. Interestingly, most of the thrombin-selective inhibitors attained S-shaped conformation in thrombin, while FXa-selective inhibitors attained L-shaped conformations in FXa. The role of residue at 99th position of FXa and thrombin toward governing protease selectivity was further substantiated using molecular dynamics simulations on the wild-type and mutated Y99L FXa bound to thrombin-selective inhibitor 2. Furthermore, predictive CoMFA (FXa q2 = 0.814; thrombin q2 = 0.667) and CoMSIA (FXa q2 = 0.807; thrombin q2 = 0.624) models were developed and validated (FXa r2(test) = 0.823; thrombin r(2)(test) = 0.816) to feature molecular determinants of ligand binding affinity using the docking-based conformational alignments (DBCA) of 141 (88(train)+53(test)) and 39 (27(train)+11(test)) nonamidine class of potent FXa (0.004 ≤ K(i) (nM) ≤ 4700) and thrombin (0.001 ≤ K(i) (nM) ≤ 940) inhibitors, respectively. Interestingly, the ligand-based insights well corroborated with the structure-based insights in terms of the role of steric, electrostatic, and hydrophobic parameters for governing the selectivity for the two proteases. The new computational insights presented in this study are expected to be valuable for understanding and designing potent and selective antithrombotic agents.  相似文献   
135.
136.
The interactions between an anionic surfactant, viz., sodium dodecylbenzenesulfonate and nonionic surfactants with different secondary ethoxylated chain length, viz., Tergitol 15-S-12, Tergitol 15-S-9, and Tergitol 15-S-7 have been studied in the present article. An attempt has also been made to investigate the effect of ethoxylated chain length on the micellar and the thermodynamic properties of the mixed surfactant systems. The micellar properties like critical micelle concentration (CMC), micellar composition (XA), interaction parameter (β), and the activity coefficients (fA and fNI) have been evaluated using Rubingh's regular solution theory. In addition to micellar studies, thermodynamic parameters like the surface pressure (ΠCMC), surface excess values (ΓCMC), average area of the monomers at the air–water interface (Aavg), free energy of micellization (ΔGm), minimum energy at the air–water interface (Gmin), etc., have also been calculated. It has been found that in mixtures of anionic and nonionic secondary ethoxylated surfactants, a surfactant containing a smaller ethoxylated chain is favored thermodynamically. Additionally, the adsorption of nonionic species on air/water interface and micelle increases with decreasing secondary ethoxylated chain length. Dynamic light scattering and viscometric studies have also been performed to study the interactions between anionic and nonionic surfactants used.  相似文献   
137.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   
138.
Saha A  Abboud KA  Christou G 《Inorganic chemistry》2011,50(24):12774-12784
The syntheses, crystal structures, and magnetochemical characterization are reported for the new mixed-valent Mn clusters [Mn(2)(II)Mn(III)(O(2)CMe)(2)(edteH(2))(2)](ClO(4)) (1), [Mn(II)(2)Mn(III)(2)(edteH(2))(2)(hmp)(2)Cl(2)](Mn(II)Cl(4)) (2), [Mn(III)(6)O(2)(O(2)CBu(t))(6)(edteH)(2)(N(3))(2)] (3), [Na(2)Mn(III)(8)Mn(II)(2)O(4)(OMe)(2)(O(2)CEt)(6)(edte)(2)(N(3))(6)] (4), and (NEt(4))(2)[Mn(8)(III)Mn(2)(II)O(4)(OH)(2)-(O(2)CEt)(6)(edte)(2)(N(3))(6)](5), where edteH(4) is N,N,N',N'-tetrakis-(2-hydroxyethyl)ethylenediamine and hmpH is 2-(hydroxymethyl)pyridine. 1-5 resulted from a systematic exploration of the effect of different Mn sources, carboxylates, the presence of azide, and other conditions, on the Mn/edteH(4) reaction system. The core of 1 consists of a linear Mn(II)Mn(III)Mn(II) unit, whereas that of 2 is a planar Mn(4) rhombus within a [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane unit. The core of 3 comprises a central [Mn(III)(4)(OR)(2)] incomplete-dicubane on either side of which is edge-fused a triangular [Mn(III)(3)(μ(3)-O)] unit. The cores of 4 and 5 are similar and consist of a central [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane on either side of which is edge-fused a distorted [Mn(II)Mn(III)(3)(μ(3)-O)(2)(μ(3)-OR)(2)] cubane unit. Variable-temperature, solid-state direct current (dc) and alternating current (ac) magnetization studies were carried out on 1-5 in the 5.0-300 K range, and they established the complexes to have ground state spin values of S = 3 for 1, S = 9 for 2, and S = 4 for 3. The study of 3 provided an interesting caveat of potential pitfalls from particularly low-lying excited states. For 4 and 5, the ground state is in the S = 0-4 range, but its identification is precluded by a high density of low-lying excited states.  相似文献   
139.
140.
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system’s crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene’s π system), thus providing insight into the typical nature of As···D interaction distances and ∠R–As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号