首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
化学   67篇
数学   5篇
物理学   21篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
71.
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.  相似文献   
72.
73.
74.
It has been demonstrated in several instances that the 0.001 a.u. (electrons per bohr3) isodensity mapped electrostatic surface potentials on the fluorines along the outermost extensions of the C? F covalent bonds in tetrafluoromethane (CF4) are entirely negative, they are thereby unable to engage in σhole bonding interactions with the negative sites on another molecules. In this study, we have attempted at resolving this controversy by performing various high‐level electronic structure calculations with Quadratic Configuration Integrals of Singles and Doubles QCISD(full), second‐order Møller–Plesset MP2(full), and 12 other Density Functional Theory (DFT) based functionals with and without dispersion corrections, all in conjunction with the 6–311++G(2d,2p) basis set. The results achieved with all the levels of theory utilized suggest that the fluorine's σholes in CF4 are positive regardless of the 0.001‐, 0.0015‐, and 0.002‐a.u. isodensity mapped electrostatic surfaces examined. Because of this specific quality, the fluorines in CF4 have displayed their capacities to form not only 1:1 clusters with the Lewis bases such as water (H2O), ammonia (NH3), formaldehyde (H2C?O), hydrogen fluoride (HF), and hydrogen cyanide (HCN), but also 1:2, 1:3, and 1:4 clusters with the latter three randomly chosen Lewis bases. Various topological and nontopological features obtained from applications of atoms in molecules, noncovalent interaction reduced‐density‐gradient and natural bond orbital analytical tools reveal that the N···F, O···F, and F···F long‐ranged interactions developed between the interacting monomers in H3N···FCF3, H2O···FCF3, and (Y? D)n=1–4···F4C (Y? D = H2C?O, HCN, and HF) are reminiscent of halogen bonding. The nonadditive cooperative and anticooperative energetic effects emerged on cluster formations are discussed in detail. © 2015 Wiley Periodicals, Inc.  相似文献   
75.
76.
A concise total synthesis of racemic asteriscunolide C in eight steps has been described starting from neopentane diol involving an efficient Yamaguchi esterification using an aldehyde-acid, intramolecular Horner–Wittig–Emmons olefination, and a late stage ring-closing metathesis to construct the strained 11-membered ring with one Z- and two E-double bonds.  相似文献   
77.
Annulative π-extension (APEX) reaction has become a powerful tool for the precise synthesis of well-defined polycyclic aromatic hydrocarbons (PAHs) such as nanographene, graphene, and other PAHs possessing unique structure. Herein, an APEX reaction has been realized at the masked bay-region for the efficient and rapid synthesis of valuable PAH, pyrene, bearing substitutions at the most challenging K-region. RhIII-catalyzed ketone-directed C−H activation at the peri-position of a naphthyl-derived ketone, alkyne-insertion, intramolecular nucleophilic attack at the carbonyl-group, dehydration, and aromatization steps occurred in one-pot to effectuate the protocol. Employing this strategy, a two-fold APEX reaction on enantiopure BINOL-derived ketones provided access to axially-chiral bipyrene derivatives. The detailed DFT study to support proposed mechanism, and synthesis of helical PAHs like dipyrenothiophene and dipyrenofuran are other highlights of the present study.  相似文献   
78.
The application of intact-cell mass spectrometry (ICM) by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry to achieve direct protein-profiling of bacterial species is now well established. However, this methodology has not to our knowledge been applied to the analysis of mammalian cells in routine culture. Here, we describe a novel application of ICM by which we have identified proteins in intact cells from two lines representative of pancreatic islet alpha- and beta-cells. Adherent alphaTC1 clone 9 and betaTC6 F7 cells were harvested into phosphate-buffered saline (PBS) using enzyme-free dissociation buffer before 1 microL of cell suspension was spotted onto MALDI plates. Cells were overlaid with sinapinic acid then washed with pure water before application of a final coat of sinapinic acid. Data in the 2000-20,000 m/z range were acquired in linear mode on a Voyager DE-Pro mass spectrometer. The proteins which ionised were composed in large part of peptide hormones (e.g. insulin and glucagon) known to be packaged into the secretory granules of the beta- and alpha-cells respectively. However, in addition to visualising the peptides expected to be associated with these cells, a mass consistent with oxyntomodulin was identified in the cultured alpha-cells, a finding not previously reported to our knowledge. In summary, this paper describes, for the first time, a rapid and direct method useful for identifying secretory products in intact endocrine cells.  相似文献   
79.
Here we have demonstrated that radio frequency plasma and ultraviolet-ozone (UVO) surface modifications are effective treatments for enabling the thermal bonding of polymeric microfluidic chips at temperatures below the T(g) (glass transition temperature) of the polymer. The effects of UVO and plasma treatments on the surface properties of a cyclic polyolefin and polystyrene were examined with X-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM) surface roughness measurements and surface adhesion measurements with AFM force-distance data. Three-point bending tests using a dynamic mechanical analyzer (DMA) were used to characterize the bond strength of thermally sealed polymer parts and the cross-sections of the bonded microchannels were evaluated with scanning electron microscopy (SEM). The experimental results demonstrated that plasma and UVO surface treatments cause changes in the chemical and physical characteristics of the polymer surfaces, resulting in a decrease in T(g) at the surface, and thus allowing the microfluidic chips to be effectively bonded at temperatures lower than the T(g) of the bulk polymer without losing the intended channel geometry.  相似文献   
80.
Low cost biosorbents have gained considerable importance in the past decade for their removal efficiency of contaminants from wastewaters. Both removal and recycle of the phosphate anion through benign methods are relevant to sustain a steady balance. An attempt has been made to give a comprehensive insight into several physico-chemical factors leading to the adsorption process by various natural biosorbents. Few important facts regarding phosphate biosorption have emerged out as key points viz., pH < pHpzc, high uptake capacity; correlation with Langmuir isotherm model and pseudo second order kinetics; decrease of uptake capacity with longer contact time; enhancement of adsorption process in presence of counter ions, etc. Also, it was noted that the adsorbate: adsorbent ratio is crucial for the removal efficiency of the phosphate ions. A few biosorbents exhibit removal efficiency to a large extent (>95%) although even higher adsorption capacity can be obtained by the modification of the adsorbents. Commercial biomatrices like biochars have shown wide applications for removal of phosphates. Magnetic biochars have shown special performance owing to the presence of iron and a porous nature of their structure. Desorption studies revealed that almost complete recovery of the phosphate ion is possible through simple ion exchange mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号