首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
化学   67篇
数学   5篇
物理学   21篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有93条查询结果,搜索用时 156 毫秒
61.
Based on an experimental observation, it has been controversially suggested in a study (Kurotobi et al., Science 2011 , 33, 613) that a single molecule of water can completely be localized within the subnano‐space inside the fullerene C60 cage and, that neither the H atoms nor the O lone‐pairs are linked, either via hydrogen bonding or through dative bonding, with the interior C‐framework of the C60 cage. To resolve the controversy, electronic structure calculations were performed by using the density functional theory, together with the quantum theory of atoms in molecules, the natural population and bond orbital analyses, and the results were analyzed by using varieties of recommended diagnostics often used to interpret noncovalent interactions. The present results reveal that the mechanically entrapped H2O molecule is not electronically innocent of the presence of the cage; each H atom of H2O is weakly O? H???C60 bonded, whereas the O lone‐pairs are O???C60 bonded regardless of the conformations investigated. Exploration of various featured properties suggests that H2O@C60 may be regarded as a unique system composed of both inter‐ and intramolecular interactions.  相似文献   
62.
We experimentally investigate the spectral extent and spectral profile of the supercontinuum (SC) generated in transparent solids: barium fluoride, calcium fluoride, and fused silica upon irradiation by intense femtosecond-long pulses of 800, 1,380, and 2,200 nm light. These wavelengths correspond to the normal and anomalous group velocity dispersion (GVD) regimes in fused silica calcium fluoride and barium fluoride. We observe an isolated (anti-Stokes) wing on the blue side most prominently in fused silica but also in CaF2. The SC conversion efficiency is measured for the long wavelengths used in our experiments. We also present results on filamentation in BaF2 in the anomalous GVD regime, including visualization of focusing–refocusing events within the crystal; the size of a single filament is also determined. The 15-photon absorption cross section in BaF2 is deduced to be 6.5 × 10?190 cm30 W?15 s?1.  相似文献   
63.
64.
Five dinuclear copper(II) complexes, [Cu2L1(N3)2·2H2O] (1), [Cu2L2(N3)2·2H2O] (2), [Cu2L3(N3)2·2H2O] (3), [Cu2L4(N3)2·2H2O] (4) and [Cu2L5(N3)2·2H2O] (5) of Robson type macrocyclic Schiff-base ligands derived from [2 + 2] condensation of 4-methyl-2,6-diformylphenol with 1,3-diaminopropane (H2L1), 1,2-diaminoethane (H2L2), 1,2-diaminopropane (H2L3), 1,2-diamino-2-methylpropane (H2L4) and 1,2-diaminocyclohexane (H2L5), respectively have been synthesized and characterized. Catecholase activity of those complexes using 3,5-di-tert-butylcatechol as substrate has been investigated in two solvents, methanol and acetonitrile. The role of the solvent and of the steric properties of the macrocyclic ligand of these complexes on their catecholase activity has been examined thoroughly. Acetonitrile is observed to be a better solvent than methanol as far as their catalytic activity is concerned. However, methanol reveals to be a better choice to identify the enzyme–substrate adduct. The investigation also prompted that chelate ring size does affect on the catalytic efficiency: 6-membered ring (as in H2L1) exhibits better activity than its 5-membered counterpart (as in H2L2). The activity of the 5-membered counter parts also depend upon the steric factor. Moreover, the catalytic activity of the complexes is enhanced to a significant extent by increasing the bulkiness of the substituents on the backbone of macrocyclic H2L2 ligands.  相似文献   
65.
Methylammonium lead tribromide (CH3NH3PbBr3) perovskite as a photovoltaic material has attracted a great deal of recent interest. Factors that are important in their application in optoelectronic devices include their fractional contribution of the composition of the materials as well as their microscopic arrangement that is responsible for the formation of well-defined macroscopic structures. CH3NH3PbBr3 assumes different polymorphs (orthorhombic, tetragonal and cubic) depending on the evolution temperature of the bulk material. An understanding of the structure of these compounds will assist in rationalizing how halogen-centered non-covalent interactions play an important role in the rational design of these materials. Density functional theory (DFT) calculations have been performed on polymorphs of CH3NH3PbBr3 to demonstrate that the H atoms on C of the methyl group in CH3NH3+ entrapped within a PbBr64? perovskite cage are not electronically innocent, as is often contended. We show here that these H atoms are involved in attractive interactions with the surrounding bromides of corner-sharing PbBr64? octahedra of the CH3NH3PbBr3 cage to form Br?H(C) hydrogen bonding interactions. This is analogous to the way the H atoms on N of the NH3+ group in CH3NH3+ form Br?H(N) hydrogen bonding interactions to stabilize the structure of CH3NH3PbBr3. Both these hydrogen bonding interactions are shown to persist regardless of the nature of the three polymorphic forms of CH3NH3PbBr3. These, together with the Br?C(N) carbon bonding, the Br?N(C) pnictogen bonding, and the Br?Br lump-hole type intermolecular non-covalent interactions identified for the first time in this study, are shown to be collectively responsible for the eventual emergence of the orthorhombic geometry of the CH3NH3PbBr3 system. These conclusions are arrived at from a systematic analysis of the results obtained from combined DFT, Quantum Theory of Atoms in Molecules (QTAIM), and Reduced Density Gradient Non-Covalent Interaction (RDG-NCI) calculations carried out on the three temperature-dependent polymorphic geometries of CH3NH3PbBr3.  相似文献   
66.
Arpita Neogi 《Tetrahedron》2005,61(39):9368-9374
Tributyltin radical mediated cyclization of the glucose derived exo-methylene furanose derivatives 5a-c led to the highly functionalized cis-fused bicyclic ethers 6a-c. The product could subsequently be transformed to the optically active tricyclic nucleoside analogue 8 or oxepine derivative 9.  相似文献   
67.
The reaction of epoxides with chiral nonracemic lithium amide bases, designed and prepared from (R)-phenylglycine, has been studied in detail. A maximum of 80% ee was obtained for conversion of cyclohexene oxide to (S)-2-cyclohexen-1-ol. Enantioselective deprotonation of a variety of other epoxides was studied. A cyclopentanoid core unit for prostaglandin synthesis was synthesized in 97% ee.  相似文献   
68.
In the past, bio‐inspired extreme water repellent property has been strategically embedded on commercially available sponges for developing selective oil absorbents. However, most of the reported materials lack physical and chemical durability, limiting their applicability at practically harsh settings. Herein, a stable dispersion of polymeric nanocomplexes was exploited to achieve a chemically reactive coating on the highly compressible melamine foam. A superhydrophobic melamine foam (SMF) was achieved after post‐covalent modification of the reactive coating through 1,4‐conjugate addition reaction at ambient conditions. The durability of the embedded extreme water repellent property in the as‐modified melamine foam has been elaborately demonstrated through exposing it to severe physical manipulations, chemically harsh aqueous media including pH 1, pH 12, surfactant contaminated water, river water, seawater and prolonged UV irradiation. Thus, the highly tolerant SMF was utilized as an efficient oil absorbent wherein oils of varying densities could be selectively recovered from an oil/water interface with high (e.g., 137 g g?1 for chloroform and 83 g g?1 for diesel) oil absorption capacity. Moreover, the selective oil absorption capacity of the as‐synthesized material remained unaffected at practically relevant severe chemical and physical settings, and the extreme water repellency of the material remained unaltered even after repetitive (at least 50 cycles) use for oil/water separation.  相似文献   
69.
Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like ‘Euphorbia neriifolia’, ‘phytoconstituents’, ‘traditional uses’, ‘ethnopharmacological uses’, ‘infectious diseases’, ‘molecular mechanisms’, ‘COVID-19’, ‘bacterial infection’, ‘viral infection’, etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, β-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3β-friedelanol, 3β-acetoxy friedelane, 3β-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and β-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号