首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   4篇
  国内免费   1篇
化学   155篇
晶体学   10篇
力学   14篇
数学   47篇
物理学   129篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   15篇
  2017年   7篇
  2016年   13篇
  2015年   16篇
  2014年   18篇
  2013年   16篇
  2012年   27篇
  2011年   26篇
  2010年   10篇
  2009年   16篇
  2008年   18篇
  2007年   25篇
  2006年   21篇
  2005年   20篇
  2004年   20篇
  2003年   12篇
  2002年   5篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
排序方式: 共有355条查询结果,搜索用时 687 毫秒
31.
In this work, we report the Rietveld refinement, microstructure, conductivity and impedance properties of Ba[Zr0.25Ti0.75]O3 ceramic synthesized by solid state reaction. This ceramic was characterized by X-ray diffraction, Rietveld refinement, scanning electron microscopy and energy dispersive X-ray spectrometry. Impedance spectroscopy analyses reveals a non-Debye relaxation phenomenon being its relaxation frequency moving toward to positive side with increase of temperature. A significant shift in impedance loss peaks toward higher frequency side indicates conduction in material and favoring the long range motion of mobile charge carriers. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The variation of dc conductivity exhibited a negative temperature coefficient of resistance behavior. The ac conductivity data are used to evaluate the density of states at Fermi level and activation energy of this ceramic. The dc electrical and thermal conductivities of grain and grain boundary have been discussed.  相似文献   
32.
Hydrophilic Ag nanostructures were synthesized by physical vapour deposition of 5 nm Ag thin films followed by irradiation with 1.5 keV Ar atoms. Optical absorbance measurements show a characteristic surface plasmon resonance absorption band in visible region. A blue-shift in absorbance from 532 to 450 nm is observed with increasing fluence from 1 × 1016 to 3 × 1016 atoms/cm2. Atomic force microscopy was performed for the pristine and irradiated samples to study the surface morphology. The atom beam irradiation induced sputtering and surface diffusion lead to the formation of plasmonic surface. Rutherford backscattering spectroscopy of the pristine and irradiated film indicates that metal content in the film decreases with ion fluence, which is attributed to the sputtering of Ag by Ar atoms. The contact angle measurement demonstrates the possibility of engineering the hydrophilicity by atom beam irradiation.  相似文献   
33.
One of the objectives of coding theory is to ensure reliability of the computer memory systems that use high-density RAM chips with wide I/O data (e.g. 16, 32, 64 bits). Since these chips are highly vulnerable to m-spotty byte errors, this goal can be achieved using m-spotty byte error-control codes. This paper introduces the m-spotty Lee weight enumerator, the split m-spotty Lee weight enumerator and the joint m-spotty Lee weight enumerator for byte error-control codes over the ring of integers modulo ? (? ≥  2 is an integer) and over arbitrary finite fields, and also discusses some of their applications. In addition, MacWilliams type identities are also derived for these enumerators.  相似文献   
34.
35.
Zinc oxide (ZnO) and Cu-doped ZnO (CZO) thin films were prepared on borosilicate glass substrates by spray pyrolysis technique. The X-ray diffraction study revealed that Cu doping caused a reduction in crystallite size. AFM study showed an increase in roughness with doping. This is attributed to the aggregation of particles to form clusters. From transmission electron microscopy analysis, the particle size is measured to be in the range 30–65 nm (average particle size 48 nm) for undoped ZnO, whereas it is in the range 24–56 nm (average particle size 40 nm) for CZO film. The electrical resistivity of the thin films was investigated in the presence of air as well as N2 mixed air at different temperatures in the range 30–270 °C. The change in resistivity properties was explained on the basis of conduction phenomena within the grain along with the grain boundaries as well as Cu- and N2-induced defect states. The thermal activation energy of ZnO was found to be in the range 0.04–0.7 eV and dependent on Cu doping and N2 level in air.  相似文献   
36.
The ferroelectric ceramics Ba5RTi3V7O30 (R=Ho, Gd, La) have been synthesized by solid-state reaction technique. Preliminary X-ray structural analysis confirmed a single-phase formation of the compound in orthorhombic structure. Surface morphology of the compounds was studied by scanning electron microscopy (SEM). Detailed studies of electrical properties (i.e., dielectric constant, loss tangent, ac conductivity) as a function of temperature (RT-773 K) and at four different frequencies (1 kHz, 10 kHz, 100 kHz and 1 MHz) show ferroelectric–paraelectric phase transition of the compounds of diffuse-type. The activation energy has been evaluated from ac conductivity following Arrhenius equation. The conductivity pattern shows that it is strongly frequency dependent and obeys Jonscher's power relation.  相似文献   
37.
JPC – Journal of Planar Chromatography – Modern TLC - Piperine, an alkaloid with diverse biological activity commonly occurring in fruits of Piper sp., has high commercial, economical,...  相似文献   
38.
39.
A modification to the phase-jitter calculation procedure of Ho et al. (J Fluid Mech 230:319–337, 1991), called the HZFB method (Ho, Zohar, Foss, and Buell), and an extension of the pattern recognition technique for phase-jitter calculation are presented in this work. Results for the phase jitter calculated using the three methods are compared for a separated shear layer past a surface-mounted rib. The original HZFB method is shown to yield inaccurate results in the presence of small-scale turbulence, while the modified HZFB method and the pattern recognition technique provide the correct estimates of phase jitter.  相似文献   
40.
For Raman spectroscopic analyses of the cells and other biological samples, the choice of the right substrate material is very important to avoid loss of information in characteristic spectral features because of competing background signals. In the current study, Raman spectroscopy is used to characterize several potential Raman substrates. Raman vibrational bands of the substrate material are discussed. The surface topography is analyzed by atomic force microscopy, and the root mean square surface roughness values are reported. Biocompatibility of the substrates is tested with Hep G2 cells evaluating cellular morphology as well as live/dead staining. Calcium fluoride, silicon, fused silica, borofloat glass, and silicon nitride membranes support cell growth and adherence. Silicon, borofloat glass, and fused silica give rise to Raman signals in the region of interest. Calcium fluoride substrate (UV grade) is suitable for Raman spectroscopic investigation of living cells. Nickel foil is suitable substrate for Raman spectroscopic investigation but cellular adherence and viability depend on the quality of the foil. Silicon nitride membranes coated with nickel chrome is a suitable Raman substrate in closed microfluidic systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号