首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   12篇
  国内免费   3篇
化学   359篇
晶体学   3篇
力学   14篇
数学   60篇
物理学   123篇
  2023年   5篇
  2022年   13篇
  2021年   6篇
  2020年   12篇
  2019年   8篇
  2018年   13篇
  2017年   6篇
  2016年   17篇
  2015年   8篇
  2014年   8篇
  2013年   26篇
  2012年   26篇
  2011年   47篇
  2010年   26篇
  2009年   19篇
  2008年   35篇
  2007年   47篇
  2006年   29篇
  2005年   30篇
  2004年   31篇
  2003年   26篇
  2002年   19篇
  2001年   8篇
  2000年   12篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1992年   8篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
31.
Muyo G  Harvey AR 《Optics letters》2005,30(20):2715-2717
We describe the mapping of the optical transfer function (OTF) of an incoherent imaging system into a geometrical representation. We show that for defocused traditional and wavefront-coded systems the OTF can be represented as a generalized Cornu spiral. This representation provides a physical insight into the way in which wavefront coding can increase the depth of field of an imaging system and permits analytical quantification of salient OTF parameters, such as the depth of focus, the location of nulls, and amplitude and phase modulation of the wavefront-coding OTF.  相似文献   
32.
Phosphine exchange of [RuIIBr(MeCOO)(PPh3)2(3‐RBzTh)] (3‐RBzTh=3‐benzylbenzothiazol‐2‐ylidene) with a series of diphosphines (bis(diphenylphosphino)methane (dppm), 1,2‐bis(diphenylphosphino)ethylene (dppv), 1,1′‐bis(diphenylphosphino)ferrocene (dppf), 1,4‐bis(diphenylphosphino)butane (dppb), and 1,3‐(diphenylphosphino)propane (dppp)) gave mononuclear and neutral octahedral complexes [RuBr(MeCOO)(η2‐P2)(3‐RBzTh)] (P2=dppm ( 2 ), dppv ( 3 ), dppf ( 4 ), dppb ( 5 ), or dppp ( 6 )), the coordination spheres of which contained four different ligands, namely, a chelating diphosphine, carboxylate, N,S‐heterocyclic carbene (NSHC), and a bromide. Two geometric isomers of 6 ( 6a and 6 b ) have been isolated. The structures of these products, which have been elucidated by single‐crystal X‐ray crystallography, show two structural types, I and II, depending on the relative dispositions of the ligands. Type I structures contain a carbenic carbon atom trans to the oxygen atom, whereas two phosphorus atoms are trans to bromine and oxygen atoms. The type II system comprises a carbene carbon atom trans to one of the phosphorus atoms, whereas the other phosphorus is trans to the oxygen atom, with the bromine trans to the remaining oxygen atom. Complexes 2 , 3 , 4 , and 6a belong to type I, whereas 5 and 6 b are of type II. The kinetic product 6 b eventually converts into 6a upon standing. These complexes are active towards catalytic reduction of para‐methyl acetophenone by 2‐propanol at 82 °C under 1 % catalyst load giving the corresponding alcohols. The dppm complex 2 shows the good yields (91–97 %) towards selected ketones.  相似文献   
33.
Photochemical deposition of Co and Ni based oxygen evolution catalysts on hematite nanorods cathodically shifted the onset potential of photocurrent near to the flat band potential of hematite. A 9.5 fold enhancement in the photocurrent density at 0.86 V vs. RHE compared to the parent hematite photoanode was observed with the Ni-Bi/Fe(2)O(3) photoanode.  相似文献   
34.
A series of N‐(ferrocenylmethyl amino acid) fluorinated benzene‐carboxamide derivatives 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i and 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i have been synthesized by coupling ferrocenylmethyl amine 3 with various substituted N‐(fluorobenzoyl) amino acid derivatives using the standard N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride, 1‐hydroxybenzotriazole protocol. The amino acids employed in this study were glycine and L‐alanine. All of the compounds were fully characterized using a combination of 1H NMR, 13C NMR, 19F NMR, distortionless enhancement by polarization transfer (DEPT)‐135, 1H–1H correlation spectroscopy (COSY) and 1H–13C COSY (heteronuclear multiple‐quantum correlation) spectroscopy. The compounds were biologically evaluated on the oestrogen‐positive MCF‐7 breast cancer cell line. Compounds 4g , 4i , 5h and 5i exhibited cytotoxic effects on the MCF‐7 breast cancer cell line. N‐(Ferrocenylmethyl‐L‐alanine)‐3,4,5‐trifluorobenzene‐carboxamide ( 5h ) was the most active compound, with an IC50 value of 2.84 μm . Compounds 4i , 5h and 5i had lower IC50 values than that found for the clinically employed anticancer drug cisplatin (IC50 = 16.3 μm against MCF‐7). Guanine oxidation studies confirmed that 5h was capable of generating oxidative damage via a reactive oxygen species‐mediated mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
35.
Heuer DM  Saha S  Kusumo AT  Archer LA 《Electrophoresis》2004,25(12):1772-1783
The electrophoretic mobility of three-arm asymmetric star DNA molecules, produced by incorporating a short DNA branch at the midpoint of rigid-rod linear DNA fragments, is investigated in polyacrylamide gels. We determine how long the added branch must be to separate asymmetric star DNA from linear DNA with the same total molecular weight. This work focuses on two different geometric progressions of small DNA molecules. First, branches of increasing length were introduced at the center of a linear DNA fragment of constant length. At a given gel concentration, we find that relatively small branch lengths are enough to cause a detectable reduction in electrophoretic mobility. The second geometric progression starts with a small branch on a linear DNA fragment. As the length of this branch is increased, the DNA backbone length is decreased such that the total molar mass of the molecule remains constant. The branch length was then increased until the asymmetric branched molecule becomes a symmetric three-arm star polymer, allowing the effect of molecular topology on mobility to be studied independent of size effects. DNA molecules with very short branches have a mobility smaller than linear DNA of identical molar mass. The reason for this change in mobility when branching is introduced is not known, however, we explore two possible explanations in this article. (i) The branched DNA could have a greater interaction with the gel than linear DNA, causing it to move slower; (ii) the linear DNA could have modes of motion or access to pores that are unavailable to the branched DNA.  相似文献   
36.
A carbazole homopolymer and carbazole copolymers based on 9,9'-dialkyl-[3,3']-bicarbazolyl, 2,5-diphenyl-[1,3,4]-oxadiazole and 9,9-bis(4-[3,7-dimethyloctyloxy]phenyl)fluorene were synthesized and their electrical and photophysical properties were characterized with respect to their application as host in phosphorescent polymer light-emitting diodes. It is shown that the triplet energy of a polymer depends on the specific connections between its building blocks. Without changing the composition of the polymer, its triplet energy can be increased from 2.3 to 2.6 eV by changing the way in which the different building blocks are coupled together. For poly(9-vinylcarbazole) (PVK), a carbazole polymer often used as host for high-energy triplet emitters in polymer light-emitting diodes, a large hole-injection barrier of about 1 eV exists due to the low-lying HOMO level of PVK. For all carbazole polymers presented here, the HOMO levels are much closer to the Fermi level of a commonly used anode such as ITO and/or a commonly used hole-injection layer such as PEDOT:PSS. This makes high current densities and consequently high luminance levels possible at moderate applied voltages in polymer light-emitting diodes. A double-layer polymer light-emitting diode is constructed comprising a PEDOT:PSS layer as hole-injection layer and a carbazole-oxadiazole copolymer doped with a green triplet emitter as emissive layer that shows an efficacy of 23 cd/A independent of current density and light output.  相似文献   
37.
The reactions of CpRu(dppf)Cl (1) with the sulfur-containing ligands, thiophenol HSPh, 2-mercaptopyridine C5H4N(SH), thiourea SC(NH2)2, vinylene trithiocarbonate SCS(CH)2S and ethylene trithiocarbonate SCS(CH2)2S, yielded chloro-substituted derivatives, viz. the mono-ruthenium(II) complexes CpRu(dppf)(SPh) (2), [CpRu(dppf)(SC5H4NH)]BPh4 (3)BPh4, [CpRu(dppf)(SC(NH2)2]PF6 (4)PF6, [CpRu(dppf)(SCS(CH)2S)]Cl (5)Cl and [CpRu(dppf)(SCS(CH2)2S)]Cl (6)Cl, respectively. Treatment of 1 with AuCl(SMe2) in the presence of NH4PF6 gave [(CpRu(dppf)(SMe2)]PF6 (7)PF6. The reaction of 1 or 6 with SnCl2 resulted in cleavage of chloro and dithiocarbonate ligands, respectively, to give CpRu(dppf)SnCl3 (8). All complexes were spectroscopically characterized and the structures of 2 and cationic complexes 4-7 were determined by single-crystal diffraction analyses.  相似文献   
38.
At present, there is no direct experimental evidence that primary silica particles, which exist only transiently for a few seconds during the St?ber silica synthesis, can be stable in aqueous solutions. In the present work, we show that primary silica particles are formed spontaneously after the dissolution of diglycerylsilane (DGS) in aqueous solutions and remain stable for prolonged periods of time. By using time-resolved fluorescence anisotropy (TRFA), we demonstrate that this unique property of DGS is ascribed to the slow kinetics of silica particle growth in diluted sols at pH approximately 9.0. The anisotropy decay of the cationic dye rhodamine 6G (R6G), which strongly adsorbs to silica oligomers and nanoparticles in DGS sols, could be fit to three components: a fast (picosecond) scale component associated with free R6G, a slower (nanosecond) rotational component associated with R6G bound to primary silica particles, and a residual (nondecaying) anisotropy component associated with R6G that was bound to secondary or larger particles that were unable to rotate on the time scale of the R6G emission lifetime (4 ns). The data show that, under conditions where fast hydrolysis is obtained, the initial size of the nuclei depends on the silica concentration, with larger nuclei being present in more concentrated sols, while the rate of growth of primary particles depends on both silica concentration and solution pH. At low silica concentrations and high pHs, it was possible to observe the growth of stable, nonaggregating primary silica particles by a mechanism involving rapid nucleation followed by monomer addition. The presence of stable primary particles was confirmed by atomic force microscopy (AFM) imaging. At higher silica concentrations and lower pHs, there was an increase in the initial size of the nuclei formed, which subsequently grew to a larger radius (> 4.5 nm) or aggregated with time, and in such cases, nucleation and aggregation occurred simultaneously in the early stage of silica formation. The data clearly show the power of time-resolved fluorescence anisotropy decay measurements for probing the growth of silica colloids and show that this method is useful for elucidating the mechanism of particle formation and growth in situ.  相似文献   
39.
With the world’s focus on rapidly deploying second generation biofuels technologies, there exists today a good deal of interest in how yields, economics, and environmental impacts of the various conversion processes of lignocellulosic biomass to transportation fuels compare. Although there is a good deal of information regarding these conversion processes, this information is typically very difficult to use on a comparison basis because different underlying assumptions, such as feedstock costs, plant size, co-product credits or assumed state of technology, have been utilized. In this study, a rigorous comparison of different biomass to transportation fuels conversion processes was performed with standard underlying economic and environmental assumptions so that exact comparisons can be made. This study looked at promising second-generation conversion processes utilizing biochemical and thermochemical gasification technologies on both a current and an achievable state of technology in 2012. The fundamental finding of this study is that although the biochemical and thermochemical processes to ethanol analyzed have their individual strengths and weaknesses, the two processes have very comparable yields, economics, and environmental impacts. Hence, this study concludes that based on this analysis there is not a distinct economic or environmental impact difference between biochemical and thermochemical gasification processes for second generation ethanol production.  相似文献   
40.
The coupling of the widely used separation technique of conventional sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) with the mass accuracy measurement capability of mass Spectrometry (MS) provides a very powerful analytical technique. However, at present, there is no simple, definitive method for coupling the two methods. Typically, separated proteins are extracted from the gel, either as the native protein or as a peptide mixture after in-gel proteolytic digestion, and then analyzed by mass Spectrometry. However, the various extraction techniques described previously have been labor intensive and require a large number of steps. The mass Spectrometry analysis of very low concentrations of in vivo derived proteins requires minimum sample handling and on-line concentration. Therefore, we have developed an efficient microelectroelution technique that is applied in a single step manner and contains an on-line concentration device. Initial results from this system have shown a high efficiency of analyte elution from the gel and a simple, robust technique for the coupling of SDS-containing gels with MALDI-TOF-MS analysis and a capability of analyzing proteins at the subpicomole level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号