首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3088篇
  免费   46篇
  国内免费   33篇
化学   1758篇
晶体学   66篇
力学   68篇
数学   669篇
物理学   606篇
  2022年   49篇
  2021年   64篇
  2020年   30篇
  2019年   36篇
  2018年   38篇
  2017年   56篇
  2016年   79篇
  2015年   76篇
  2014年   86篇
  2013年   213篇
  2012年   136篇
  2011年   182篇
  2010年   117篇
  2009年   128篇
  2008年   172篇
  2007年   161篇
  2006年   151篇
  2005年   126篇
  2004年   145篇
  2003年   100篇
  2002年   107篇
  2001年   52篇
  2000年   43篇
  1999年   42篇
  1998年   40篇
  1997年   51篇
  1996年   56篇
  1995年   31篇
  1994年   34篇
  1993年   41篇
  1992年   27篇
  1991年   30篇
  1990年   33篇
  1989年   31篇
  1988年   20篇
  1987年   26篇
  1986年   18篇
  1985年   30篇
  1984年   41篇
  1983年   24篇
  1982年   24篇
  1981年   30篇
  1980年   23篇
  1979年   21篇
  1978年   20篇
  1977年   29篇
  1976年   12篇
  1975年   12篇
  1974年   10篇
  1972年   11篇
排序方式: 共有3167条查询结果,搜索用时 15 毫秒
91.
Excited-state reaction paths and energy profiles of 5,6-dihydroxyindole (DHI), one of the elementary building blocks of eumelanin, have been determined with the approximated singles-and-doubles coupled-cluster (CC2) method. 6-Hydroxy-4-dihydro-indol-5-one (HHI) is identified as a photochromic species, which is formed via nonadiabatic hydrogen migration from the dangling OH group of DHI to the neighboring carbon atom of the six-membered ring. It is shown that HHI is a typical excited-state hydrogen-transfer (ESIHT) system. HHI absorbs strongly in the visible range of the spectrum. A barrierless hydrogen transfer in the (1)pipi* excited state, followed by barrierless torsion of the hydroxyl group, lead to a low-lying S(1)-S(0) conical intersection and thus to ultrafast internal conversion. This very efficient mechanism of excited-state deactivation provides HHI with a high degree of intrinsic photostability. It is suggested that the metastable photochemical product HHI plays an essential role for the photoprotective biological function of eumelanin.  相似文献   
92.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   
93.
This study aimed to develop, characterize, and evaluate antibacterial and cytotoxic properties of novel fullerene derivative composed of C60 fullerenol and standard aminoglycoside antibiotic–gentamicin (C60 fullerenol-gentamicin conjugate). The successful introduction of gentamicin to fullerenol was confirmed by X-ray photoelectron spectroscopy which together with thermogravimetric and spectroscopic analysis revealing the formula of the composition as C60(OH)12(GLYMO)11(Gentamicin)0.8. The dynamic light scattering (DLS) revealed that conjugate possessed ability to form agglomerates in water (size around 115 nm), while Zeta potential measurements demonstrated that such agglomerates possessed neutral character. In vitro biological assays indicated that obtained C60 fullerenol-gentamicin conjugate possessed the same antibacterial activity as standard gentamicin against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli, which proves that combination of fullerenol with gentamicin does not cause the loss of antibacterial activity of antibiotic. Moreover, cytotoxicity assessment demonstrated that obtained fullerenol-gentamicin derivative did not decrease viability of normal human fibroblasts (model eukaryotic cells) compared to control fibroblasts. Thus, taking into account all of the results, it can be stated that this research presents effective method to fabricate C60 fullerenol-gentamicin conjugate and proves that such derivative possesses desired antibacterial properties without unfavorable cytotoxic effects towards eukaryotic cells in vitro. These promising preliminary results indicate that obtained C60 fullerenol-gentamicin conjugate could have biomedical potential. It may be presumed that obtained fullerenol may be used as an effective carrier for antibiotic, and developed fullerenol-gentamicin conjugate may be apply locally (i.e., at the wound site). Moreover, in future we will evaluate possibility of its applications in inter alia tissue engineering, namely as a component of wound dressings and implantable biomaterials.  相似文献   
94.
The orientation of antibodies, employed as capture molecules on biosensors, determines biorecognition efficiency and bioassay performance. In a previous publication we demonstrated for antibodies attached covalently to silicon that an increase in their surface amount Γ, evaluated with ellipsometry, induces changes in their orientation, which is traced directly using Time-of-Flight Secondary Ion Mass Spectroscopy combined with Principal Component Analysis. Here, we extend the above studies to antibodies adsorbed physically on a 3-aminopropyltriethoxysilane (APTES) monolayer. Antibodies physisorbed on APTES (0 ≤ Γ ≤ 3.5 mg/m2) reveal the Γ ranges for flat-on, side-on, and vertical orientation consistent with random molecular packing. The relation between orientation and Γ is juxtaposed for silicon functionalized with APTES, APTES modified with glutaraldehyde (APTES/GA) and N-hydroxysuccinimide-silane (NHS-silane). Antibody reorientation occurs at lower Γ values when physisorption (APTES) is involved rather than chemisorption (APTES/GA, NHS-silane). At high Γ values, comparable proportions of molecules adapting head-on and tail-on vertical alignment are concluded for APTES and the NHS-silane monolayer, and they are related to intermolecular dipole–dipole interactions. Intermolecular forces seem to be less decisive than covalent binding for antibodies on the APTES/GA surface, with dominant head-on orientation. Independently, the impact of glutaraldehyde activation of APTES on vertical orientation is confirmed by separate TOF-SIMS measurements.  相似文献   
95.
Meat is a rich source of various nutrients. However, it needs processing before consumption, what in turn generates formation of carcinogenic compounds, i.a., polycyclic aromatic hydrocarbons (PAH), nitrosamines (NOCs), and the most mutagenic heterocyclic aromatic amines (HAAs). It was widely found that many factors affect the content of carcinogens in processed meat. However, it has recently been discovered that after digestion free HAAs are released, which are not detectable before enzymatic treatment. It was established that the highest percentage of carcinogens is released in the small intestine and that its amount can be increased up to 6.6-fold. The change in free HAAs content in analyzed samples was dependent on many factors such as meat type, doneness, particle size of meat, and the enzyme concentration used for digestion. In turn, introduction of bacteria naturally occurring in the human digestive tract into the model significantly decreases total amount of HAAs. Contrary, the addition of food ingredients rich in polyphenols, fiber, and water (pepper powder, onions, apples) increases free HAAs’ release up to 56.06%. Results suggests that in vitro digestion should be an integral step of sample preparation. Artificial digestion introduced before chromatographic analysis will allow to estimate accurately the content of carcinogens in processed meat.  相似文献   
96.
97.
For dehydration of CaC2O4·H2O and thermal dissociation of CaCO3 carried out in Mettler Toledo TGA/SDTA-851e/STARe thermobalance similar experimental conditions was applied: 9–10 heating rates, q = 0.2, 0.5, 1, 2, 3, 6, 12, 24, 30, and 36 K min−1, for sample mass 10 mg, in nitrogen atmosphere (100 ml min−1) and in Al2O3 crucibles (70 μl). There were analyzed changes of typical TGA quantities, i.e., T, TG and DTG in the form of the relative rate of reaction/process intended to be analyzed on-line by formula (10). For comparative purposes, the relationship between experimental and equilibrium conversion degrees was used (for P = P\ominus P = P^{{\ominus}} ). It was found that the solid phase decomposition proceeds in quasi-equilibrium state and enthalpy of reaction is easily “obscured” by activation energy. For small stoichiometric coefficients on gas phase side (here: ν = 1) discussed decomposition processes have typical features of phenomena analyzable by known thermokinetic methods.  相似文献   
98.
Enantiomerically pure (S)-mandelic acid was synthesised from benzaldehyde by sequential hydrocyanation and hydrolysis in a bienzymatic cascade at starting concentrations up to 0.25 M. A cross-linked enzyme aggregate (CLEA) composed of the (S)-selective oxynitrilase from Manihot esculenta and the non-selective nitrilase from Pseudomonas fluorescens EBC 191 was employed as the biocatalyst. The nitrilase produces approx. equal amounts of (S)-mandelic acid and (S)-mandelic amide from (S)-mandelonitrile under standard conditions, but we surprisingly found that high (up to 0.5 M) concentrations of HCN induced a marked drift towards amide production. By including the amidase from Rhodococcus erythopolis in the CLEA we obtained (S)-mandelic acid as the sole product in 90% yield and >99% enantiomeric purity.  相似文献   
99.
A simple and efficient synthetic strategy to all four enantiomerically pure diethyl 1,2-di(N-Boc-amino)propylphosphonates has been elaborated starting from the corresponding N-[(R)-(1-phenylethyl)]aziridine-(2S)- and N-[(S)-(1-phenylethyl)]aziridine-(2R)-carboxaldehydes, employing a one-pot three-components Kabachnik-Fields reaction followed by the hydrogenolytic removal of the chiral auxiliary and aziridine ring opening with simultaneous protection of the amino groups as the N-Boc derivatives.  相似文献   
100.
The aim of this paper was to assess the oxidative stability of structured lipids synthesized by enzymatic interesterification of a blend of lard and rapeseed oil with concentrates of n ? 3 fatty acids. Differential scanning calorimetry was used to evaluate the oxidation induction time of interesterified fats as a parameter assessing resistance of tested fats to their thermal-oxidative decomposition. Moreover, the IR spectra registered in the classic spectral range (4000–400 cm?1) were used to differentiate the samples of interesterified fats. The results show that the interesterification process decreased the induction time. Increased content polar fraction in the interesterified fatty product can reduce its resistance to oxidation. FT-IR data of selected spectral ranges correlate with the value of induction time at a statistically significant level. This is a proof that chemical changes occurring during different treatments of the starting mixture can be monitored by FT-IR spectroscopy. Moreover, obtained correlations can be used for the evaluation of an induction value of an unknown oil sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号