Nitrogen- and iron-containing carbon dots (N,Fe-CDs) are synthesized by hydrothermal treatment of branched polyethylenimine (BPEI) and hemin at 180 °C. The N,Fe-CDs are mainly doped with nitrogen and trace amounts of iron(III). The N,Fe-CDs also display intrinsic fluorescence with excitation/emission maxima at 365/452 nm and a quantum yield of 27 %. The nanodots are shown to act as peroxidase mimics by catalyzing the oxidation of tetramethylbenzidine (TMB) by hydrogen peroxide to form a blue product whose quantity can be determined by photometry at 652 nm. This was exploited to design colorimetric and fluorometric assays for dopamine (DA). The colorimetric assay is based on the oxidation of DA by H2O2 in presence of the N,Fe-CDs and TMB. It has an instrumental detection limit of 40 nM (at an S/N ratio of 3), and a visual detection limit of 0.4 μM. The fluorometric assay is based on an inner filter effect that is caused by the formation of oxidized TMB which overlaps (and absorbs) the emission of the N,Fe-CDs located at 452 nm. The fluorometric detection limit is as low as 20 nM (at an S/N ratio of 3).
Graphical abstract Carbon dots containing nitrogen and iron (N,Fe-CDs) were synthesized by hydrothermal treatment of branched polyethylenimine and hemin. The N,Fe-CDs display excellent fluorescent properties, peroxidase-like activity and potential application in colorimetric and fluorometric detection of dopamine.
We describe a chemical exfoliation method for the preparation of MoS2 nanosheets. The nanosheets were incorporated into poly(3,4-ethylenedioxythiophene) (PEDOT) by electrodeposition on a glassy carbon electrode (GCE) to form a nanocomposite. The modified GCE is shown to enable simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to the synergistic effect of MoS2 and PEDOT, this electrode displays better properties in terms of electrocatalytic oxidation of AA, DA and UA than pure PEDOT, which is illustrated by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimum conditions and at pH 7.4, the respective sensitivities and best working potentials are as follows: AA: 1.20 A?mM?1?m?2, 30 mV; DA: 36.40 A?mM?1?m?2, 210 mV; UA: 105.17 A?mM?1?m?2, 350 mV. The calculated detection limits for AA, DA and UA are 5.83 μM, 0.52 μM and 0.95 μM, respectively. The modified electrode was applied to the detection of the three species in human urine samples and gave satisfactory results.
Graphical abstract MoS2 nanosheets were prepared by a facile chemical exfoliation method. MoS2 and poly(3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrodes were fabricated, which are shown to enable simultaneous determination of ascorbic acid, dopamine and uric acid with high sensitivity and selectivity.
A composite material obtained by ultrasonication of graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) was loaded with manganese dioxide (MnO2), poly(diallyldimethylammonium chloride) and gold nanoparticles (AuNPs), and the resulting multilayer hybrid films were deposited on a glassy carbon electrode (GCE). The microstructure, composition and electrochemical behavior of the composite and the modified GCE were characterized by transmission electron microscopy, Raman spectra, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The electrode induces efficient electrocatalytic oxidation of dopamine at a rather low working voltage of 0.22 V (vs. SCE) at neutral pH values. The response is linear in the 0.5 μM to 2.5 mM concentration range, the sensitivity is 233.4 μA·mM ̄1·cm ̄2, and the detection limit is 0.17 μM at an SNR of 3. The sensor is well reproducible and stable. It displays high selectivity over ascorbic acid, uric acid and glucose even if these are present in comparable concentrations.
Graphical abstract Gold nanoparticles were self-assembled onto the surface of the MnO2 decorated graphene oxide-carbon nanotubes composites with poly(diallyldimethylammonium chloride) (PDDA) as a coupling agent. Further, a sensitive electrochemical sensor of dopamine was developed via immobilizing this nanocomposite on a glassy carbon electrode (GCE).
We have prepared graphene quantum dot-europium(III) complex composites by noncovalently connecting chelating ligands dibenzoylmethane (DBM) and 1,10-phenanthroline (Phen) with graphene quantum dots (GQDs) first, followed by coordination to Eu(III). The resulting composites are well water-soluble and display red fluorescence of high color purity. The composites were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Aqueous solutions of the composites under 365 nm excitation display fluorescence with a peak at 613 nm and a quantum yield as high as 15.5 %. The good water solubility and stable photoluminescence make the composites very different from other Eu(III)-based coordination complexes. The composites are cell viable and can be used to label both the cell membrane and the cytoplasm of MCF-7 cells. They are also shown to act as bioprobes for in-vivo localization of tumorous tissue. In our perception, such composites are expected to possess wide scope because of the many functionalizations that are possible with GQDs.
This mini-review describes recent developments and trends in the area of syntheses and applications of azo compounds, which are planned to act as initiators of radical reactions, particularly polymerizations. The paper reports chemical modifications of well-known initiators (AIBN, etc.) or variants of syntheses of new types of these compounds. The chemical modifications of basic skeletons of azo initiators are discussed in the context with their properties and applications. Also discussed are the contemporary trends in the development of these initiators, particularly in preparation of microparticles and nanoparticles of polymers or hybrid inorganic–organic microparticles and nanoparticles prepared for intentional studies and applications. 相似文献
An in situ bimolecular reaction, in which syngas is fed with toluene as a secondary reactant (hereafter Tol in situ methylation), was studied over bifunctional catalysts comprised of methanol synthesis catalyst and H-ZSM-5 in a fixed-bed down-flow reactor at 460 psig. When physically mixed with H-ZSM-5 to form bifunctional catalysts, CrZ_HZ (Cr2O3/ZnO + HZSM-5) catalyst showed much higher activity than CZA_HZ (CuO/ZnO/Al2O3 + H-ZSM-5) in the Tol in situ methylation, while CrZ catalyst exhibited substantially lower activity than CZA in methanol synthesis. CO conversion to methanol in the Tol in situ methylation was estimated by Bz in situ methylation. The CO conversion to methanol was calculated to be in the range of 11–27 %, while that in methanol synthesis over CrZ was about 5 % at most due to chemical equilibrium limitation. By employing a silicalite-coated H-ZSM-5 (Sil/HZ) in bifunctional catalyst, xylene selectivity and para-xylene yield were much improved in the Tol in situ methylation. 相似文献
An environmentally benign, multicomponent integrated chemical process has been developed for the synthesis of 3,5-dispirosubstituted piperidines by cyclo-condensation reaction of amines, formaldehyde, and dimedone using iron(III) trifluroacetate [Fe(F3CCO2)3] Lewis acid in aqueous micellar medium at ambient temperature (25–30 °C). The heterogeneous solid acid catalyst conveniently promotes this double amino methylation reaction in which six molecules condense in one pot to form six new covalent bonds. The synthesized 3,5-dispirosubstituted piperidines have been screened for their in vitro antibacterial activity using agar well method. Many of these compounds showed satisfactory antibacterial activity as compared to standard drugs against all the bacteria tested. 相似文献
2,6-Diiododiaryl ethers are not only useful blocks to construct substituted diaryl ethers but are also characteristic drug precursors. In this research, a one-pot tandem oxidation of phenols substituted with electron-withdrawing group at the para position by excess diacetoxyiodobenzene is proven as a novel and efficient method for preparing 2,6-diiododiaryl ethers. Using this method, three new 2,6-diiododiaryl ethers, namely, methyl 3,5-diiodo-2-methoxy-4-phenoxybenzoate (2), methyl 3,5-diiodo-4-phenoxybenzoate (6), and 1-(2,6-diiodo-4-nitrophenoxy)benzene (7) were readily obtained from the corresponding phenols, and the yields were good. 相似文献
Dimethyl carbonate (DMC) was synthesized via transesterification of ethylene carbonate and methanol with ionic liquid catalysts. For this reaction, 1,4-diazobicyclo[2.2.2]octane (DABCO), [Choline]OH, and [BMIM]Cl were used as a homogeneous catalyst, and hydrotalcite, [DABCO]OH@MCF, [DABCO]Cl@MCF, and DABCO/MCF were used as a heterogeneous catalyst. To support the ionic liquids, mesoporous cellular foam (MCF) was prepared and characterized by SEM, TEM and BET surface area analyzer. The average cell and window sizes of the prepared MCF were 34.4 and 21.3 nm, respectively. The prepared MCF had a well structured three-dimensional structure. Among the homogeneous catalysts used, DABCO showed the highest DMC yield about 84 %, and among the heterogeneous catalysts, [DABCO]OH@MCF showed the highest DMC yield about 77 %. In the reusability test of the used catalysts, there was only 8 % point decrease in DMC yield with [DABCO]OH@MCF, whereas 58 percent point decrease in DMC yield with DABCO/MCF after four times recycling tests. The effects of an anion on the catalytic activity were investigated. The optimum reaction condition for DMC synthesis was also investigated with [DABCO]OH@MCF catalyst. 相似文献