首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   2篇
化学   86篇
力学   2篇
数学   9篇
物理学   9篇
  2023年   1篇
  2022年   6篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1993年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
91.
In aqueous solutions, as in organic solvents, rhodium hydrides display the chemistry of one of the three limiting forms, i.e. {Rh(I)+ H+}, {Rh(II)+ H.}, and {Rh(III)+ H-}. A number of intermediates and oxidation states have been generated and explored in kinetic and mechanistic studies. Monomeric macrocyclic rhodium(II) complexes, such as L(H2O)Rh2+ (L = L1 = [14]aneN4, or L2 = meso-Me6[14]aneN4) can be generated from the hydride precursors by photochemical means or in reactions with hydrogen atom abstracting agents. These rhodium(II) complexes are oxidized rapidly with alkyl hydroperoxides to give alkylrhodium(III) complexes. Reactions of Rh(II) with organic and inorganic radicals and with molecular oxygen are fast and produce long-lived intermediates, such as alkyl, superoxo and hydroperoxo complexes, all of which display rich and complex chemistry of their own. In alkaline solutions of rhodium hydrides, the existence of Rh(I) complexes is implied by rapid hydrogen exchange between the hydride and solvent water. The acidity of the hydrides is too low, however, to allow the build-up of observable quantities of Rh(I). Deuterium kinetic isotope effects for hydride transfer to a macrocyclic Cr(v) complex are comparable to those for hydrogen atom transfer to various substrates.  相似文献   
92.
Bent-core mesogens based on semi-flexible dicyclohexylmethane spacers   总被引:1,自引:0,他引:1  
New, bent-core mesogens are described in which the core of the molecule is a semiflexible, di(4-aminocyclohexyl)methane spacer. The compounds show nematic, columnar nematic and columnar phases as shown by a combination of X-ray diffraction and optical microscopy. The potential of these new mesogens as biaxial nematic candidates is considered.  相似文献   
93.
Measurement traceability is universally recognised as one of the basic prerequisites for comparability of results obtained in different laboratories and is a basic aspect of metrological sciences such as analytical chemistry. This requirement is underscored by the increasing adoption of standards and measurement quality systems, such as laboratory accreditation against ISO/IEC 17025. Testing laboratories ensure traceability of their measurement results by using appropriate reference standards for calibration of instruments and control of measurement processes. For routine work in the field of water analysis, these standards are usually commercial solutions or in-house solutions prepared from pure products. Therefore, laboratories should demonstrate that their use of reference standards is appropriate and sufficient, which can be done by participation in an appropriate proficiency-testing scheme. The paper reports how measurement traceability of results from field laboratories (nitrite nitrogen, nitrate nitrogen, chloride and sulphate; all in water) can be demonstrated by participation in a proficiency-testing scheme based on reference values.  相似文献   
94.
Lemma K  Ellern A  Bakac A 《Inorganic chemistry》2003,42(11):3662-3669
Substitution and exchange reactions of cis- and trans-L(1)(H(2)O)RhH(2+) (L(1) = 1,4,8,11-tetraazacyclotetradecane = [14]aneN(4)) were studied in aqueous solutions by UV-vis and (1)H NMR spectroscopies. At pH 1 and 25 degrees C, the substitution of SCN(-) for the coordinated molecule of water is rapid and thermodynamically favorable. Spectrophotometric determinations yielded the equilibrium constants K = 1.49 x 10(3) M(-1) (cis) and 1.44 x 10(3) (trans). (1)H NMR studies in D(2)O revealed a rapid dynamic process, interpreted as the exchange between coordinated water and X(-) (X = Cl, Br, or I). On the other hand, no line broadening was observed for the strongly bound ligands CN(-) and SCN(-). The complex trans-L(1)(D(2)O)RhH(2+) undergoes a base-catalyzed H/D exchange of the hydride in D(2)O with a rate constant of (1.45 +/- 0.02) x 10(3) M(-1) s(-1). The exchange in the cis isomer is very slow under similar conditions. The complex cis-[L(1)ClRhH](ClO(4)) crystallizes in the centrosymmetric Ponemacr; space group, unit cell dimensions a = 8.9805(11) A, b = 9.1598(11) A, c = 10.4081(13) A, alpha = 81.091(2) degrees, beta = 81.978(2) degrees, gamma = 88.850(2) degrees. The rhodium atom resides in a slightly distorted octahedral environment consisting of the four N atoms of the cyclam, a stereochemically active hydrogen, and a chlorine atom.  相似文献   
95.
The reaction between certain platinum(II) complexes and alky radicals produces an unstable organoplatinum(III) intermediate, {PtIII -R}. The kinetics of this step were evaluated by laser flash photolysis with ABTS2 (2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) ion) and TMPD (tetramethylphenylenediamine) as kinetic probes. The rate constants for PtCl42? are: kPt/108 L mol?1 s?1 = 5.2, 2.8 and 0.27 for CH3, C2H5, and CH2Cl in aqueous solution at pH 1. Those with cis-Pt(NH3)2Cl2 are somewhat smaller, and those for Pt(NH3)42+ too small to measure will) this technique. The product analysis indicates that the decomposition of organoplatinum takes place by hydrolysis and (for R = C2H5 only) by β-elimination, The kinetic isotope effect on die β-elimination of DCH2CH2PtC4,2? is kH/kD = 1.2. The β-elimination step produces a PtIII-hydride that releases hydrogen gas and forms {PtIII-OH}. The short-lived Pt(III) intermediate may disproportionate or oxidize the CoII complex that is produced in the radical-generating step.  相似文献   
96.
The title reaction takes place according to the stoichiometry 2L(2)RhOO(2+) + 3HNO(2) + H(2)O --> 2L(2)Rh(OH(2))(3+) + 3NO(3)(-) + H(+) (L(2) = meso-Me(6)-[14]ane-N(4)). The kinetics are second order in HNO(2) and independent of the concentration of L(2)RhOO(2+), rate = (k(1) + k(2)[H(+)])[HNO(2)](2), where k(1) = 10.9 M(-1) s(-1) and k(2) = 175 M(-2) s(-1) at 25 degrees C and 0.10 M ionic strength. The reaction produces two observable intermediates, the nitrato (L(2)RhONO(2)(2+)) and hydroperoxo (L(2)RhOOH(2+)) complexes. The product analysis and kinetics are indicative of the initial rate-controlling formation of NO and NO(2), both of which react rapidly with L(2)RhOO(2+) in subsequent steps. The reaction with NO produces mainly L(2)RhONO(2)(2+), which hydrolyzes to L(2)Rh(OH(2))(3+) and NO(3)(-). Another minor pathway generates the hydroperoxo complex, which was detected by its known reaction with Fe(aq)(2+). The reaction of NO(2) with L(2)RhOO(2+) requires an additional equivalent of HNO(2) and produces L(2)Rh(OH(2))(3+) and NO(3)(-) via a proposed peroxynitrato complex L(2)RhOONO(2)(2+). This work provides strong evidence for the long-debated reaction between HNO(2) and H(2)NO(2)(+) to generate N(2)O(3).  相似文献   
97.
The reaction between photogenerated NO(2) radicals and a superoxochromium(III) complex, Cr(aq)OO(2+), occurs with rate constants k(Cr)(20) = (2.8 +/- 0.2) x 10(8) M(-)(1) s(-)(1) (20 vol % acetonitrile in water) and k(Cr)(40) = (2.6 +/- 0.5) x 10(8) M(-)(1) s(-)(1) (40 vol % acetonitrile) in aerated acidic solutions and ambient temperature. The product was deduced to be a peroxynitrato complex, Cr(aq)OONO(2)(2+), which undergoes homolytic cleavage of an N-O bond to return to the starting materials, the rate constants in the two solvent mixtures being k(H)(20) = 172 +/- 4 s(-)(1) and k(H)(40) = 197 +/- 7 s(-)(1). NO(2) reacts rapidly with 10-methyl-9,10-dihydroacridine, k(A)(20) = 2.2 x 10(7) M(-)(1) s(-)(1), k(A)(40) = (9.4 +/- 0.2) x 10(6) M(-)(1) s(-)(1), and with N,N,N',N'-tetramethylphenylenediamine, k(T)(40) = (1.84 +/- 0.03) x 10(8) M(-)(1) s(-)(1).  相似文献   
98.
The rapid (k > or = 10(6) M(-1) s(-1)) reaction between NO and L(2)(H(2)O)RhOO(2+) (L(2) = meso-Me(6)-[14]ane-N(4)) generates two strongly oxidizing, scavengeable intermediates, believed to be NO(2) and L(2)(H(2)O)RhO(2+). A mechanism is proposed whereby a peroxynitrito complex L(2)(H(2)O)RhOONO(2+) is formed first. The homolysis of O-O bond produces NO(2) and L(2)(H(2)O)RhO(2+) which were trapped with ABTS(2)(-) and Ni([14]aneN(4))(2+). In the absence of scavengers, the decomposition of L(2)(H(2)O)RhOONO(2+) produces both free NO(3)(-) and a rhodium nitrato complex L(2)(H(2)O)RhONO(2)(2+), which releases NO(3)(-) in an inverse acid-dependent process. The total yield of L(2)(H(2)O)RhONO(2)(2+) is 70%. In a minor, parallel path, NO and L(2)(H(2)O)RhOO(2+) react to give nitrite and the hydroperoxo complex L(2)(H(2)O)RhOOH(2+).  相似文献   
99.
Bakac A  Shi C  Pestovsky O 《Inorganic chemistry》2004,43(17):5416-5421
Superoxometal complexes L(H(2)O)MOO(2+) (L = (H(2)O)(4), (NH(3))(4), or N(4)-macrocycle; M = Cr(III), Rh(III)) react with iodide ions according to the stoichiometry L(H(2)O)MOO(2+) + 3I(-) + 3H(+) --> L(H(2)O)MOH(2+) + 1.5I(2) + H(2)O. The rate law is -d[L(H(2)O)MOO(2+)]/dt = k [L(H(2)O)MOO(2+)][I(-)][H(+)], where k = 93.7 M(-2) s(-1) for Cr(aq)OO(2+), 402 for ([14]aneN(4))(H(2)O)CrOO(2+), and 888 for (NH(3))(4)(H(2)O)RhOO(2+) in acidic aqueous solutions at 25 degrees C and 0.50 M ionic strength. The Cr(aq)OO(2+)/I(-) reaction exhibits an inverse solvent kinetic isotope effect, k(H)()2(O)/k(D)2(O) = 0.5. In the proposed mechanism, the protonation of the superoxo complex precedes the reaction with iodide. The related Cr(aq)OOH(2+)/I(-) reaction has k(H)2(O)/k(D)2(O) = 0.6. The oxidation of (NH(3))(5)Rupy(2+) by Cr(aq)OO(2+) exhibits an [H(+)]-dependent pathway, rate = (7.0 x 10(4) + 1.78 x 10(5)[H(+)])[Ru(NH(3))(5)py(2+)][Cr(aq)OO(2+)]. Diiodine radical anions, I(2)(*)(-), reduce Cr(aq)OO(2+) with a rate constant k = 1.7 x 10(9) M(-1) s(-1).  相似文献   
100.
Superoxochromium(III) complexes L(H2O)CrOO2+ (L = (H2O)4 and 1,4,8,11-tetraazacyclotetradecane) oxidize hydroperoxo complexes of rhodium and cobalt in an apparent hydrogen-atom transfer process, i.e., L(H2O)CrOO2+ + L(H2O)RhOOH2+ --> L(H2O)CrOOH2+ + L(H2O)RhOO2+. All of the measured rate constants fall in a narrow range, 17-135 M-1 s-1. These values are about 2.5-3.0 times smaller in D2O, where the hydroperoxo hydrogen is replaced by deuterium, and coordinated molecules of water by D2O. The failure of the back reaction to take place in the available concentration range places the O-H bond dissociation energy in RhOO-H2+ at or=80 kJ/mol) in the driving force for the two types of reactions. A chromyl ion, CrIVaqO2+, oxidizes L(H2O)RhOOH2+ and the cobalt analogs to the corresponding superoxo complexes. The rate constants are approximately 102-fold larger than those for the oxidation by CraqOO2+. The oxidation of tert-BuOOH by CrIVaqO2+ has k = 160 M-1 s-1 and exhibits an isotope effect kBuOOH/kBuOOD = 12. Hydrogen atom transfer from H2O2 to CraqOO2+ is slow, k approximately 10-3 M-1 s-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号