首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
化学   114篇
力学   1篇
数学   5篇
物理学   20篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   10篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   4篇
  2014年   4篇
  2013年   22篇
  2012年   9篇
  2011年   17篇
  2010年   8篇
  2009年   3篇
  2008年   5篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   6篇
  2002年   2篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
11.
A simple, mild, and ecofriendly method has been developed for the synthesis of 3-vinylchromones from 4-oxo-4H-1-benzopyran-3-carboxaldehyde (3-formylchromone) by simple Knoevenagel condensation with various active methylene compounds (AMC) in aqueous micellar media in the presence of catalytic amounts of cetyl trimethylammonium bromide (CTAB) and 1,4-diazabicyclo[2.2.2]octane (DABCO). In the case of malonic acid as AMC, the reaction resulted in formation of only Doebner decarboxylated products under the standard reaction condition. It has been also observed that 3-formylchromone derivatives primarily undergo tandem Knoevenagel and Michael reactions in the presence of > 2 equiv. of ethyl acetoacetate to produce benzophenone derivatives, by opening of pyran ring, as the sole product in good yields.  相似文献   
12.
The chromium chemistry of two positional isomers of the ligand 2-[(N-arylamino)phenylazo]pyridine (HL(1)and HL(2)) are described. While the ligand HL(1) coordinates as a bischelating tridentate N,N,N-donor, [L(1)](-), with deprotonation of the amine nitrogen, its isomer HL(2) coordinates as a neutral bidentate N,N-donor. The amine nitrogen in this case remains protonated. Thus the reaction of CrCl(3).nH(2)O with HL(1) produced the brown cationic complex, [Cr(L(1))(2)](+), [1](+). The representative X-ray structure of [1a](ClO(4)) is reported. The two azo nitrogens of the anioinc tridentate ligand approach the metal center closest with Cr(1)-N(azo) av 1.862(6) A. There is a significant degree of ligand backbone conjugation in the coordinated ligands, which resulted in shortening of the C-N distances and also in lengthening of the diazo (N=N) distances. Two synthetic approaches for the synthesis of chromium complexes of HL(2) are investigated. The first approach is based on the substitution reaction, wherein all the coordinated CO ligands of Cr(CO)(6) were completely substituted by the three bidentate HL(2) ligands to produce a violet complex [Cr(HL(2))(3)]. The second approach is based on para-amination reaction of coordinated 2-(phenylazo)pyridine (pap). Thus the reaction of an inert complex, [CrCl(2)(pap)(2)], with ArNH(2) yields a mixed ligand complex, [CrCl(2)(pap)(HL(2))], 3. In this reaction one of the two coordinated pap ligands in [CrCl(2)(pap)(2)] undergoes amination at the para carbon (with respect to the diazo function) to yield HL(2) in situ. This metal-promoted transformation is authenticated by the X-ray structure determination of a representative complex, [CrCl(2)(pap)(HL(2a))], 3a. Notable differences in bond distances along the ligand backbones of the two coordinated ligands in 3a indicate different levels of metal-ligand overlap in this complex. All the chromium complexes of HL(2) are characterized by their intense blue-violet color. The frequencies of the visible range transitions in these complexes linearly correlate with the Hammett's substitution constant. Intraligand charge-transfer transitions in the visible region are believed to be responsible for the intense color. Redox properties of all these complexes are reported.  相似文献   
13.
14.
15.
A first principle based mathematical model has been developed to characterise the effect of total liquid hold-up on the bosh silicon distribution behaviour in the dripping zone of a blast furnace. Two specific cases of hold-up behaviour have been investigated, namely, hold-up in the absence and in the presence of counter current gas flow conditions. The model exemplifies coupled phenomenon of chemical kinetics, transport processes and liquid hold-up to characterise the silicon behaviour in the dripping zone. The present modelling investigation shows that the bosh silicon level diminishes with the enhanced liquid hold-up in the dripping zone. Further, the influence of counter current gas flow on the hold-up is not significant. However, it has been observed that the liquid phase temperature reduces with increased liquid hold-up in dripping zone under steady state operating conditions. The model predictions of bosh silicon distribution have been validated with the published literatures (bulk values) and found to be in good agreement.  相似文献   
16.
This presentation reports some novel examples of organic ring amination reactions via metal mediation. The organic transformations are highly regioselective and can be controlled by the proper selection of the mediator complex. The two isomeric organic ligands viz. HL1 and HL2 were isolated in their pure states by the removal of the metal ions. These were fully characterized. The ligand HL1 has lowpKa, 8.5. Upon deprotonation, it behaves as a potentialbis chelating N,N,N-donors. The coordination chemistry of the HL1 ligand involving some 3d-metal ions is described. Two unusual low-spin complexes of manganese(II) and iron(III) are reported. The ferric complex displayed a rhombic EPR while, the corresponding manganese compound showed a complex pattern due to hyperfine coupling. All the complexes displayed large number of redox responses. A brief mention about the future projection of this work is noted.  相似文献   
17.
A mild and efficient one‐pot method has been developed for the stereoselective synthesis of structurally diverse novel iminosugar C‐alkynylglycosides. The generality of this methodology has been demonstrated with a wide variety of amines and copper acetylides. This one‐pot method has been exploited in the synthesis of new class of DNA cross‐linking agents, polyhydroxy 1‐vinyl‐tetrahydroindolizine derivatives.  相似文献   
18.
The duplex-DNA binding properties of a nonintercalating polypyridyl ruthenium(II) complex that incorporates a linear extended ligand with a catechol moiety has been probed with a variety of photo- and biophysical techniques. These studies reveal that the complex groove binds to DNA sequences biphasically, and displays binding constants equivalent to those of high-affinity metallointercalators. The complex also displays preferential binding to AT-rich sequences. Changes in the structure of the coordinated catechol ligand and the incorporation of intercalating ancillary ligands into the complex were found to modulate both the optical-binding response and binding parameters of the system, which indicates that the catechol moiety plays a crucial role in the observed enhancement to binding affinities.  相似文献   
19.
Exciton-coupled charge-transfer (CT) dynamics in TiO(2) nanoparticles (NP) sensitized with porphyrin J-aggregates has been studied by femtosecond time-resolved transient absorption spectroscopy. J-aggregates of 5,10,15-triphenyl-20-(3,4-dihydroxyphenyl) porphyrin (TPPcat) form CT complexes on TiO(2) NP surfaces. Catechol-mediated strong CT coupling between J-aggregate and TiO(2) NP facilitates interfacial exciton dissociation for electron injection into the conduction band of the TiO(2) nanoparticle in pulse width limited time (<80 fs). Here, the electron-transfer (<80 fs) process dominates over the intrinsic exciton-relaxation process (J-aggregates: ca. 200 fs) on account of exciton-coupled CT interaction. The parent hole on J-aggregates is delocalized through J-aggregate excitonic coherence. As a result, holes immobilized on J-aggregates are spatially less accessible to electrons injected into TiO(2) , and thus the back electron transfer (BET) process is slower than that of the monomer/TiO(2) system. The J-aggregate/porphyrin system shows exciton spectral and temporal properties for better charge separation in strongly coupled composite systems.  相似文献   
20.
The structural characterization of different kinds of zigzag and chiral single-walled carbon nanotubes (SWNTs) has been investigated theoretically using (19)F NMR spectroscopy. The chemical shift anisotropy (CSA) tensor is computed at different levels of theory for the (19)F nuclei in different forms of functionalized fluorinated carbon nanotubes (CNT). A set of fluorine CSA parameters comprising the span, skew, and isotropic chemical shift is computed for each form of the fluoronanotubes and multidimensional CSA parameter correlation maps are constructed. We show that these correlations are able to clearly distinguish between the chiral and zigzag forms of fluorinated carbon nanotubes (F-SWNTs). Implications for solid-state and liquid-state NMR experiments are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号