首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   17篇
  国内免费   2篇
化学   284篇
晶体学   3篇
力学   32篇
数学   83篇
物理学   160篇
  2023年   2篇
  2022年   28篇
  2021年   22篇
  2020年   14篇
  2019年   18篇
  2018年   19篇
  2017年   14篇
  2016年   21篇
  2015年   19篇
  2014年   20篇
  2013年   40篇
  2012年   38篇
  2011年   23篇
  2010年   29篇
  2009年   22篇
  2008年   18篇
  2007年   19篇
  2006年   23篇
  2005年   18篇
  2004年   6篇
  2003年   10篇
  2002年   22篇
  2001年   10篇
  2000年   9篇
  1999年   2篇
  1997年   2篇
  1996年   5篇
  1995年   7篇
  1994年   3篇
  1993年   10篇
  1992年   10篇
  1991年   6篇
  1990年   11篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   8篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有562条查询结果,搜索用时 15 毫秒
11.
Electrical resistivity, magnetic susceptibility, and electron paramagnetic resonance measurements were carried out for cubic hexaboride KB(6), which is one electron short of completely filling its conduction band. It is found that KB(6) is not metallic and has localized spins. KB(6) exhibits a highly unusual hysteresis in the magnetic susceptibility below 100 K, which suggests that it undergoes a slow relaxation process.  相似文献   
12.
The total phenolic content (TPC) from Cassia javanica L. petals were extracted using ethanolic solvent extraction at concentrations ranging from 0 to 90% and an SCF-CO2 co-solvent at various pressures. Ultrasound-assisted extraction parameters were optimized using response surface methodology (RSM). Antioxidant and anticancer properties of total phenols were assessed. An SCF-CO2 co-solvent extract was nano-encapsulated and applied to sunflower oil without the addition of an antioxidant. The results indicated that the best treatment for retaining TPC and total flavonoids content (TFC) was SCF-CO2 co-solvent followed by the ultrasound and ethanolic extraction procedures. Additionally, the best antioxidant activity by β-carotene/linoleic acid and DPPH free radical-scavenging test systems was observed by SCF-CO2 co-solvent then ultrasound and ethanolic extraction methods. SCF-CO2 co-solvent recorded the highest inhibition % for PC3 (76.20%) and MCF7 (98.70%) and the lowest IC50 value for PC3 (145 µ/mL) and MCF7 (96 µ/mL). It was discovered that fortifying sunflower oil with SCF-CO2 co-solvent nanoparticles had a beneficial effect on free fatty acids and peroxide levels. The SCF-CO2 method was finally found to be superior and could be used in large-scale processing.  相似文献   
13.
We have developed a modified method for the extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes (BTEX) in aqueous samples. It based on dispersive liquid-liquid microextraction along with solidification of floating organic microdrops. The dispersion of microvolumes of an extracting solvent into the aqueous occurs without dispersive solvent. Various parameters have been optimized. BTEX were quantified via GC with FID detection. Under optimized conditions, the preconcentration factors range from 301 to 514, extraction efficiencies from 60 to 103 %, repeatabilities from 2.2 to 4.1 %, and intermediate precisions from 3.5 to 7.0 %. The relative recovery for each analyte in water samples at three spiking levels is >85.6 %, with a relative standard deviation of <7.4 %.
Figure
A modified method based on dispersive liquid-liquid microextraction to preconcentrate benzene, toluene, ethylbenzene and xylenes was investigated. The method was rapid, precise, efficient, and sensitive. Experimental parameters affecting the extraction process were evaluated. The optimized procedure was validated according to the ICH guidance.  相似文献   
14.
The synthesis of novel substituted 3-p-nitro-phenyliminocoumarins and corresponding N-ureaiminocoumarins is described. The condensation of these materials with oxalyl chloride leads to the corresponding N-parabanic iminocoumarins, which have not previously been described, in moderate or good yields and high selectivity. The structures were characterized by Fourier transform infrared, 1H and 13C NMR, and elemental analysis.

Additional information

ACKNOWLEDGMENTS

The authors acknowledge the Ministry of Higher Education, Scientific Research, and Technology in Tunisia for their financial support. They also thank Pr. Rachid El Gharbi for his useful discussions about this work.  相似文献   
15.
Aquaporin is a family of small membrane-proteins that are capable of transporting nano-sized materials. In the present paper, we investigate the structure of these channels and provide information about the mechanism of individual molecules being encapsulated into aquaglyceroporin (GlpF) and aquaporin-1 (AQP1) channels by calculating the potential energy. In particular, we presents a mathematical model to determine the total potential energy for the interaction of the ammonia and nitric oxide molecules and different aquaporin channels which we assume to have a symmetrical cylindrical structure. We propose to describe these interactions in two steps. Firstly, we model the nitrogen atom as a discrete point and secondly, we model the three hydrogen atoms on the surface of a sphere of a certain radius. Then, we find the total potential energy by summing these interactions. Next, by considering the nitric oxide molecule as two discrete atoms uniformly distributed interacting with GlpF and AQP1 channels then gathering all pairs of interaction to determine the potential energy. Our results show that the ammonia and nitric oxide molecules can be encapsulated into both GlpF and AQP1 channels.  相似文献   
16.
Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD), has been developed for the extraction and determination of 14 organochlorine pesticides (hexachlorocyclohexanes (α-HCH, β-HCH and δ-HCH), Lindane (γ-HCH), Aldrin, Dieldrin, Endrin, Heptachlor, Heptachlor epoxide, α-Chlordane, β-Chlordane and p,p′-DDT, p,p′-DDD, p,p′-DDE) in river water samples. Factors relevant to the microextraction efficiency, such as the kind of extraction and disperser solvent, their volume and the salt effect was investigated and optimised. In this method the appropriate mixture of extraction solvent (13.5 µL carbon disulphide) and disperser solvent (0.50 mL acetone) were rapidly injected into the aqueous sample by syringe. The values of the detection limit of the method were in the range of 0.05–0.001 µg L?1, while the relative standard deviations for five replicates varied from 2.7 to 9.3%. A good linearity (0.9894 ≤ r 2 ≤ 0.9998) and a broad linear range (0.01–200 µg L?1) were obtained. The method exhibited enrichment factors ranging from 647 to 923, at room temperature. The relative standard deviations varied from 2.7 to 9.3% (n = 5). The relative recoveries of each pesticide from water samples at spiking levels of 2.00 and 10.0 µg L?1 were 88.0–111.0% and 95.8–104.1%, respectively. Finally, the proposed method was successfully utilised for the preconcentration and determination of the organochlorine pesticides in the Jajrood River water samples.  相似文献   
17.
Hydroxyapatite-supported Ni-Ce-Cu catalysts were synthesised and tested to study their potential for use in the steam reforming of glycerol to produce hydrogen. The catalysts were prepared by the deposition-precipitation method with variable nickel, cerium, and copper loadings. The performance of the catalysts was evaluated in terms of hydrogen yield at 600°C in a tubular fixed-bed microreactor. All catalysts were characterised by the BET surface area, XRD, TPR, TEM, and FE-SEM techniques. The reaction time was 240 min in a fixed-bed reactor at 600°C and atmospheric pressure with a water-to-glycerol feed molar ratio of 8: 1. It was found that the Ni-Ce-Cu (3 mass %-7.5 mass %-7.5 mass %) hydroxyapatite-supported catalyst afforded the highest hydrogen yield (57.5 %), with a glycerol conversion rate of 97.3 %. The results indicate that Ni/Ce/Cu/hydroxyapatite has great potential as a catalyst for hydrogen production by steam reforming of glycerol.  相似文献   
18.
A sensitive method based on liquid chromatography combined with a diode array detector was developed and validated to simultaneously determine tamoxifen, and its active metabolites N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen in human plasma samples. The green and sustainable vortex-assisted dispersive liquid-phase microextraction technique based on the natural hydrophobic deep eutectic solvent was used for the extraction and preconcentration of the analytes. Chemometrics and multivariate analysis were used to optimize the independent variables including the type and volume of deep eutectic solvent, extraction time, and ionic strength. Under optimal conditions, calibration curves were linear in a suitable range with the lower limits of quantification (0.8–10.0 μg/L), which covered the relevant concentrations of the analytes in plasma samples for a clinical study. Intra- and interday precision evaluated at three concentrations for the analytes were lower than 8.2 and 12.1%, respectively. Accuracy was in the range of 94.9–104.7%. The applicability of the developed method on human plasma samples illustrated the range 45.1–72.8, 98.4–128.3, 0.9–1.2, and 2.7–6.1 μg/L for tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen, respectively. The validated method can be effective for the pharmacokinetics, pharmacodynamics, and therapeutic drug monitoring studies of tamoxifen and its main metabolites in biological fluids.  相似文献   
19.
Research on Chemical Intermediates - Some new DAMN-based Schiff base 6a–6g were synthesized via a condensation reaction of the corresponding azo dyes with...  相似文献   
20.
We report the realization of a novel all-optical logic AND-NOR gate based on cross-gain modulation (XGM). The used scheme requires only one SOA to perform the logic gate with three input signals. A 8.5 dB dynamic extinction ratio with a switching time of about 650 ps for the rise time and 100 ps for the fall time.  相似文献   
[首页] « 上一页 [1] 2 [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号