首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   7篇
化学   58篇
晶体学   1篇
力学   10篇
数学   7篇
物理学   24篇
  2022年   3篇
  2021年   8篇
  2020年   13篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   7篇
  2014年   8篇
  2013年   7篇
  2012年   2篇
  2011年   9篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1981年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
11.
A class of recurrent neural networks is constructed by generalizing a specific class of n-neuron networks. It is shown that the newly constructed network experiences generic pitchfork and Hopf codimension one bifurcations. It is also proved that the emergence of generic Bogdanov–Takens, pitchfork–Hopf and Hopf–Hopf codimension two, and the degenerate Bogdanov–Takens bifurcation points in the parameter space is possible due to the intersections of codimension one bifurcation curves. The occurrence of bifurcations of higher codimensions significantly increases the capability of the newly constructed recurrent neural network to learn broader families of periodic signals.  相似文献   
12.
CD47 is a receptor belonging to the immunoglobulin (Ig) superfamily and broadly expressed on cell membranes. Through interactions with ligands such as SIRPα, TSP-1, integrins, and SH2-domain bearing protein tyrosine phosphatase substrate-1 (SHPS-1), CD47 regulates numerous functions like cell adhesion, proliferation, apoptosis, migration, homeostasis, and the immune system. In this aspect, previous research has shown that CD47 modulates phagocytosis via macrophages, the transmigration of neutrophils, and the activation of T-cells, dendritic cells, and B-cells. Moreover, several studies have reported the increased expression of the CD47 receptor in a variety of diseases, including acute lymphoblastic leukemia (ALL), chronic myeloid leukemia, non-Hodgkin’s lymphoma (NHL), multiple myeloma (MM), bladder cancer, acute myeloid leukemia (AML), Gaucher disease, Multiple Sclerosis and stroke among others. The ubiquitous expression of the CD47 cell receptor on most resident cells of the CNS has previously been established through different methodologies. However, there is little information concerning its precise functions in the development of different neurodegenerative pathologies in the CNS. Consequently, further research pertaining to the specific functions and roles of CD47 and SIRP is required prior to its exploitation as a druggable approach for the targeting of various neurodegenerative diseases that affect the human population. The present review attempts to summarize the role of both CD47 and SIRP and their therapeutic potential in neurodegenerative disorders.  相似文献   
13.
The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs’ chemical composition was performed by a gas chromatography–mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.  相似文献   
14.
Using a spark discharge system, we synthesized Ag-Cu, Pt–Au and Cu-W mixed particles a few nanometers in size. These combinations have miscibility gaps in the bulk form. The microsecond sparks between electrodes consisting of the respective materials, form a vapour cloud. Very fast quenching of the mixed vapour results in the formation of nanoparticles. To investigate the morphology, size, composition and structure of the particles, TEM, XRD analyses and EDS elemental mapping were performed on the samples. The average compositions were measured by ICP and the specific surface areas were determined by the BET. Our method produces Ag-Cu and Au–Pt mixed crystalline phases that do not exist in macroscopic samples. For Cu-W, alloying is not observed, and the metals are mixed on a scale of about 1 nm.  相似文献   
15.
This work compares polished and unpolished boron doped diamond (BDD) electrodes decorated with two sizes of gold nanoparticles (AuNPs) for use as robust mercury sensors in aquatic environments. The size of the catalytically active AuNPs on the electrode surfaces was demonstrated to have a less significant effect on the sensitivity for mercury detection than the surface preparation of the BDD. The lowest limits of detection were achieved with the polished BDD electrodes, which both detected mercury at a concentration of 1 pM, six orders of magnitude greater sensitivity than the lowest detection limit of 5 μM achieved with an unpolished BDD electrode, and high in comparison with other reported electrode systems.  相似文献   
16.
Ion exchange chromatography is widely used for charge variant analysis of proteins, including monoclonal antibodies. In this study, a simple and robust salt gradient cation exchange chromatography was developed and validated for quantitative determination of cetuximab in biopharmaceutical formulations. For this purpose, we investigated the effect of various parameters including buffer composition, column temperature, pH, gradient volume and flow rate on chromatographic separation of charge variants to achieve the acceptable peak separation, and the optimum condition was selected. Validation of the method was done in accordance with the International Conference on Harmonization (ICH) guidelines. The developed method was found to provide a linear regression over the concentration range of 0.06–2.00 mg mL?1 yielding a correlation coefficient of 0.9972. The limits of detection and quantification for the developed method were 0.02 and 0.06 mg mL?1, respectively. The intra-day and inter-day precision had relative standard deviation values?≤?2.7%. The robustness of the method was assessed by changes in the applied pH range of buffer, temperature, mobile phase composition, and flow rate. Specificity of the method was confirmed by evaluation of baseline resolution of the mAb variants from product excipients, which showed no interference between excipients and cetuximab. The stability indicating capability of this method was determined using photodegraded, and mechanically and thermally stressed samples. The proposed method could be applied as a simple, precise, and robust quantitative technique which can be reproduced in any labs for the high-throughput quality control and stability assessment of in-process and final product samples.  相似文献   
17.
Functional metagenomics has opened new opportunities for enzyme discovery. To exploit the full potential of this new tool, the design of selective screens is essential, especially when searching for rare enzymes. To identify novel glycosidases that employ cleavage strategies other than the conventional Koshland mechanisms, a suitable screen was needed. Focusing on the unsaturated glucuronidases (UGLs), it was found that use of simple aryl glycoside substrates did not allow sufficient discrimination against β‐glucuronidases, which are widespread in bacteria. While conventional glycosidases cannot generally hydrolyze thioglycosides efficiently, UGLs follow a distinct mechanism that allows them to do so. Thus, fluorogenic thioglycoside substrates featuring thiol‐based self‐immolative linkers were synthesized and assessed as selective substrates. The generality of the approach was validated with another family of unconventional glycosidases, the GH4 enzymes. Finally, the utility of these substrates was tested by screening a small metagenomic library.  相似文献   
18.
In this paper, the ball valve performance is numerically simulated using an unstructured CFD (Computational Fluid Dynamics) code based on the finite volume method. Navier-Stokes equations in addition to a transport equation for the vapor volume fraction were coupled in the RANS solver. Separation is modeled very well with a modification of turbulent viscosity. The results of CFD calculations of flow through a ball valve, based on the concept of experimental data, are described and analyzed. Comparison of the flow pattern at several opening angles is investigated. Pressure drop behind the ball valve and formation of the vortex flow downstream the valve section are also discussed. As the opening of the valve decreases, the vortices grow and cause higher pressure drop. In other words, more energy is lost due to these growing vortices. In general, the valve opening plays very important roles in the performance of a ball valve.  相似文献   
19.
Short spark discharges (2 μs) were successfully applied to generate mixed particles a few nanometres in diameter by fast quenching. Alloyed Cr–Co electrodes were applied to demonstrate this. Further it was shown that if the anode and the cathode are different materials, the discharge process mixes the vapour of both materials, forming mixed nanoparticles. Electron microscopy (TEM, SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were performed on the collected particles to study their size, morphology, composition and structure. The average compositions of the particles were measured by inductively coupled plasma (ICP). In addition, online measurements of the particle size distribution by mobility analysis were carried out. In the case of alloyed electrodes (Cr–Co), the relative concentration of the elements in the nanoparticulate sample was consistent with the electrode composition. When using electrodes of different metals (Au–Pd and Ag–Pd) the individual nanoparticles showed a range of mixing ratios. No surface segregation was observed in these mixed noble metal particles. Crystalline nanoparticulate mixed phases were found in all cases.  相似文献   
20.
The production of nanoparticles by microsecond spark discharge evaporation in inert gas is studied systematically applying transmission electron microscopy, mobility analysis and BET surface area measurement. The method of spark discharge is of special interest, because it is continuous, clean, extremely flexible with respect to material, and scale-up is possible. The particle size distributions are narrow and the mean primary particle size can be controlled via the energy per spark. Separated, unagglomerated particles, 3–12 nm in size, or agglomerates can be obtained depending on the flow rate. The nanoparticulate mass produced is typically 5 g/kWh. A formula is given, which estimates the mass production rate via thermal conductivity, evaporation enthalpy and the boiling point of the material used. We showed that with gas purified at the spot, the method produced gold particles that were so clean that sintering of agglomerated particles occurred at room temperature. The influence of a number of parameters on the primary particle size and mass production rate was studied and qualitatively understood with a model of Lehtinen and Zachariah (J Aerosol Sci 33:357–368, 2002). Surprisingly high charging probabilities for one polarity were obtained. Spark generation is therefore of special interest for producing monodisperse aerosols or particles of uniform size via electrical mobility analysis. Qualitative observations in the present study include the phenomenon of material exchange between the electrodes by the spark, which opens the possibility of producing arbitrary mixtures of materials on a nanoscale. If spark generation of nanoparticles is performed in a standing or almost standing gas, an aerogel of a web-like structure forms between surfaces of different electrical potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号